Displaying 101 – 120 of 128

Showing per page

Controllability of linear impulsive matrix Lyapunov differential systems with delays in the control function

Vijayakumar S. Muni, Raju K. George (2018)

Kybernetika

In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant)...

Controllability of linear impulsive systems – an eigenvalue approach

Vijayakumar S. Muni, Raju K. George (2020)

Kybernetika

This article considers a class of finite-dimensional linear impulsive time-varying systems for which various sufficient and necessary algebraic criteria for complete controllability, including matrix rank conditions are established. The obtained controllability results are further synthesised for the time-invariant case, and under some special conditions on the system parameters, we obtain a Popov-Belevitch-Hautus (PBH)-type rank condition which employs eigenvalues of the system matrix for the investigation...

Controllability of nonlinear implicit fractional integrodifferential systems

Krishnan Balachandran, Shanmugam Divya (2014)

International Journal of Applied Mathematics and Computer Science

In this paper, we study the controllability of nonlinear fractional integrodifferential systems with implicit fractional derivative. Sufficient conditions for controllability results are obtained through the notion of the measure of noncompactness of a set and Darbo's fixed point theorem. Examples are included to verify the result.

Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces

Mouffak Benchohra, Lech Górniewicz, Sotiris K. Ntouyas (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we shall establish sufficient conditions for the controllability on semi-infinite intervals for first and second order functional differential inclusions in Banach spaces. We shall rely on a fixed point theorem due to Ma, which is an extension on locally convex topological spaces, of Schaefer's theorem. Moreover, by using the fixed point index arguments the implicit case is treated.

Controllability theorem for nonlinear dynamical systems

Michał Kisielewicz (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Some sufficient conditions for controllability of nonlinear systems described by differential equation ẋ = f(t,x(t),u(t)) are given.

Controlled functional differential equations : approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2009)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m -input, m -output, minimum-phase systems with sign-definite “high-frequency gain”. The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded...

Controlled functional differential equations: approximate and exact asymptotic tracking with prescribed transient performance

Eugene P. Ryan, Chris J. Sangwin, Philip Townsend (2008)

ESAIM: Control, Optimisation and Calculus of Variations

A tracking problem is considered in the context of a class 𝒮 of multi-input, multi-output, nonlinear systems modelled by controlled functional differential equations. The class contains, as a prototype, all finite-dimensional, linear, m-input, m-output, minimum-phase systems with sign-definite “high-frequency gain". The first control objective is tracking of reference signals r by the output y of any system in 𝒮 : given λ 0 , construct a feedback strategy which ensures that, for every r (assumed bounded with...

Convergence of the Lagrange-Newton method for optimal control problems

Kazimierz Malanowski (2004)

International Journal of Applied Mathematics and Computer Science

Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In each case,...

Convergence results for nonlinear evolution inclusions

Tiziana Cardinali, Francesca Papalini (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider evolution inclusions of subdifferential type. First, we prove a convergence result and a continuous dependence proposition for abstract Cauchy problem of the form u' ∈ -∂⁻f(u) + G(u), u(0) = x₀, where ∂⁻f is the Fréchet subdifferential of a function f defined on an open subset Ω of a real separable Hilbert space H, taking its values in IR ∪ {+∞}, and G is a multifunction from C([0,T],Ω) into the nonempty subsets of L²([0,T],H). We obtain analogous results for the multivalued...

Converse theorem for practical stability of nonlinear impulsive systems and applications

Boulbaba Ghanmi, Mohsen Dlala, Mohamed Ali Hammami (2018)

Kybernetika

The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of...

Convolution operators on spaces of holomorphic functions

Tobias Lorson, Jürgen Müller (2015)

Studia Mathematica

A class of convolution operators on spaces of holomorphic functions related to the Hadamard multiplication theorem for power series and generalizing infinite order Euler differential operators is introduced and investigated. Emphasis is placed on questions concerning injectivity, denseness of range and surjectivity of the operators.

Coordinate description of analytic relations

František Neuman (2006)

Mathematica Bohemica

In this paper we present an algebraic approach that describes the structure of analytic objects in a unified manner in the case when their transformations satisfy certain conditions of categorical character. We demonstrate this approach on examples of functional, differential, and functional differential equations.

Currently displaying 101 – 120 of 128