Displaying 1001 – 1020 of 2549

Showing per page

Monotonicity properties of oscillatory solutions of differential equation ( a ( t ) | y ' | p - 1 y ' ) ' + f ( t , y , y ' ) = 0

Miroslav Bartušek, Chrysi G. Kokologiannaki (2013)

Archivum Mathematicum

We obtain monotonicity results concerning the oscillatory solutions of the differential equation ( a ( t ) | y ' | p - 1 y ' ) ' + f ( t , y , y ' ) = 0 . The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation.

Motion of spirals by crystalline curvature

Hitoshi Imai, Naoyuki Ishimura, TaKeo Ushijima (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Modern physics theories claim that the dynamics of interfaces between the two-phase is described by the evolution equations involving the curvature and various kinematic energies. We consider the motion of spiral-shaped polygonal curves by its crystalline curvature, which deserves a mathematical model of real crystals. Exploiting the comparison principle, we show the local existence and uniqueness of the solution.

Multi-dimensional Cartan prolongation and special k-flags

Piotr Mormul (2004)

Banach Center Publications

Since the mid-nineties it has gradually become understood that the Cartan prolongation of rank 2 distributions is a key operation leading locally, when applied many times, to all so-called Goursat distributions. That is those, whose derived flag of consecutive Lie squares is a 1-flag (growing in ranks always by 1). We first observe that successive generalized Cartan prolongations (gCp) of rank k + 1 distributions lead locally to all special k-flags: rank k + 1 distributions D with the derived...

Multiple periodic solutions for Hamiltonian systems with singular potential

Addolorata Salvatore (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note we prove the existence of infinitely many periodic solutions of prescribed period for a Hamiltonian system with a singular potential.

Multiple positive solutions of a nonlinear fourth order periodic boundary value problem

Lingbin Kong, Daqing Jiang (1998)

Annales Polonici Mathematici

The fourth order periodic boundary value problem u ( 4 ) - m u + F ( t , u ) = 0 , 0 < t < 2π, with u ( i ) ( 0 ) = u ( i ) ( 2 π ) , i = 0,1,2,3, is studied by using the fixed point index of mappings in cones, where F is a nonnegative continuous function and 0 < m < 1. Under suitable conditions on F, it is proved that the problem has at least two positive solutions if m ∈ (0,M), where M is the smallest positive root of the equation tan mπ = -tanh mπ, which takes the value 0.7528094 with an error of ± 10 - 7 .

Currently displaying 1001 – 1020 of 2549