Mathematical model of dengue disease transmission with severe DHF compartment.
This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which...
The cancer stem cell hypothesis has evolved to one of the most important paradigms in biomedical research. During recent years evidence has been accumulating for the existence of stem cell-like populations in different cancers, especially in leukemias. In the current work we propose a mathematical model of cancer stem cell dynamics in leukemias. We apply the model to compare cellular properties of leukemic stem cells to those of their benign counterparts....
Contact behavior plays an important role in influenza transmission. In the progression of influenza spread, human population reduces mobility to decrease infection risks. In this paper, a mathematical model is proposed to include adaptive mobility. It is shown that the mobility response does not affect the basic reproduction number that characterizes the invasion threshold, but reduces dramatically infection peaks, or removes the peaks. Numerical...
We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the...
Tuberculosis (TB) is the leading cause of death among individuals infected with the hepatitis B virus (HBV). The study of the joint dynamics of HBV and TB present formidable mathematical challenges due to the fact that the models of transmission are quite distinct. We formulate and analyze a deterministic mathematical model which incorporates of the co-dynamics of hepatitis B and tuberculosis. Two sub-models, namely: HBV-only and TB-only sub-models...
Tumour immunotherapy is aimed at the stimulation of the otherwise inactive immune system to remove, or at least to restrict, the growth of the original tumour and its metastases. The tumour-immune system interactions involve the stimulation of the immune response by tumour antigens, but also the tumour induced death of lymphocytes. A system of two non-linear ordinary differential equations was used to describe the dynamic process of interaction between the immune system and the tumour. Three different...
We present two simple models describing relations between heterotrophic and autotrophic organisms in the land and water environments. The models are based on the Dawidowicz & Zalasiński models but we assume the boundedness of the oxygen resources. We perform a basic mathematical analysis of the models. The results of the analysis are complemented by numerical illustrations.
We show that dynamical systems in inverse problems are sometimes foliated if the embedding dimension is greater than the dimension of the manifold on which the system resides. Under this condition, we end up reaching different leaves of the foliation if we start from different initial conditions. For some of these cases we have found a method by which we can asymptotically guide the system to a specific leaf even if we start from an initial condition which corresponds to some other leaf. We demonstrate...
We obtain monotonicity results concerning the oscillatory solutions of the differential equation . The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation.
The existence of synchronization is an important issue in complex dynamical networks. In this paper, we study the synchronization of impulsive coupled oscillator networks with the aid of rotating periodic solutions of impulsive system. The type of synchronization is closely related to the rotating matrix, which gives an insight for finding various types of synchronization in a united way. We transform the synchronization of impulsive coupled oscillators into the existence of rotating periodic solutions...
In this research we establish necessary and sufficient conditions for the stability of the zero solution of scalar Volterra integro-dynamic equation on general time scales. Our approach is based on the construction of suitable Lyapunov functionals. We will compare our findings with known results and provides application to quantum calculus.
In this paper, we consider a system of nonlinear delay-differential equations (DDEs) which models the dynamics of the interaction between chronic myelogenous leukemia (CML), imatinib, and the anti-leukemia immune response. Because of the chaotic nature of the dynamics and the sparse nature of experimental data, we look for ways to use computation to analyze the model without employing direct numerical simulation. In particular, we develop several tools using Lyapunov-Krasovskii analysis that allow...