Méthode de décomposition pour un problème unilatéral de type parabole
L’étude de l’équation des ondes et de ses perturbations a montré l’importance d’un certain nombre d’objets géométriques, tels que les cônes sortants et rentrants, les champs de Lorentz, des repères isotropes adaptés, etc. Parmi les systèmes d’équations hyperboliques non linéaires, les équations d’Einstein jouent un rôle central ; leur étude a nécessité, dans le cas d’un espace-temps courbe, la construction d’objets analogues à ceux du cas plat, cônes, repères adaptés, etc. La construction de ces...
A survey of the fundamental ideas which are the base of the socalled symmetrization method; a priori estimates in partial differential equations.
In the present paper we survey some recents results concerning existence of semiclassical standing waves solutions for nonlinear Schrödinger equations. Furthermore, from Maxwell's equations we derive a nonlinear Schrödinger equation which represents a model of propagation of an electromagnetic field in optical waveguides.
On étudie une classe de microdistributions intégrales de Fourier représentées à l’aide de phases homogènes analytiques réelles, d’amplitudes qui sont des réalisations holomorphes tronquées de symboles analytiques classiques, et de contours d’intégration le long desquels la partie imaginaire de la phase a une propriété convenable de positivité. On donne des théorèmes de changement de phase et de composition transverse analogues à ceux du cas , et on montre comment le calcul symbolique standard des...
We study certain Fourier integral operators arising in the inversion of data from reflection seismology.