Équations de Schrödinger couplées
Let be a complex manifold, a generic submanifold of , the real underlying manifold to . Let be an open subset of with analytic, a complexification of . We first recall the notion of -tuboid of and of and then give a relation between; we then give the corresponding result in terms of microfunctions at the boundary. We relate the regularity at the boundary for to the extendability of functions on to -tuboids of . Next, if has complex dimension 2, we give results on extension...
In this article we give a complete proof in one dimension of an a priori inequality involving pseudo-differential operators: if and are symbols in such that , then for all we have the estimate for all in the Schwartz space, where is the usual norm. We use microlocalization of levels I, II and III in the spirit of Fefferman’s SAK principle.
On étudie un opérateur de la forme sur , où est un potentiel admettant plusieurs pôles en . Plus précisément, on démontre l’estimation de résolvante tronquée à hautes fréquences, classique dans les cas non-captifs, et qui implique l’effet régularisant standard pour l’équation de Schrödinger correspondante. La preuve est basée sur l’introduction d’une mesure de défaut micro-locale semi-classique. On démontre également, dans le même contexte, des inégalités de Strichartz pour l’équation de Schrödinger....
Using a result of J.-M. Bony, we prove the weak involutivity of truncated microsupports. More precisely, given a sheaf on a real manifold and , if two functions vanish on , then so does their Poisson bracket.
The Cauchy problem for first order system is known to be well-posed in when it admits a microlocal symmetrizer which is smooth in and Lipschitz continuous in . This paper contains three main results. First we show that a Lipschitz smoothness globally in is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of full symmetrizers having the same smoothness. This notion was first introduced in [FL67]. This is the key point...
Sur vu comme variété algébrique, soient la transformation de Fourier pour les -modules, la transformation de Fourier faisceautique de Brylinsky-Malgrange-Verdier, et le foncteur “solutions”. On prouve alors que pour tout -module 1-spécialisable à l’infini , on a un isomorphisme . Le résultat a été conjecturé en 1988 par B. Malgrange, qui l’a prouvé pour module de type fini sur l’algèbre de Weyl.