Laplace asymptotics for generalized K.P.P. equation
This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière [Phys. Rev. A64 (2001) 043611] to characterize the energy of vortex filaments in a rotationally forced Bose-Einstein condensate. This functional is derived as a Γ-limit of scaled versions of the Gross-Pitaevsky functional for the wave function of such a condensate. In most situations, the vortex filament energy functional is either unbounded below or has only trivial minimizers, but we establish the existence...
We consider the problemwhere is a smooth and bounded domain,
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations...
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes...
Kolmogorov -widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the -widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.
We consider an energy-functional describing rotating superfluids at a rotating velocity , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical above which energy-minimizers have vortices, evaluations of the minimal energy as a function of , and the derivation of a limiting free-boundary problem.