Previous Page 6

Displaying 101 – 120 of 120

Showing per page

Recent results on stationary critical Kirchhoff systems in closed manifolds

Emmanuel Hebey, Pierre-Damien Thizy (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let ( M n , g ) be a closed n -manifold, n 3 . The critical Kirchhoff systems we consider are written as a + b j = 1 p M | u j | 2 d v g Δ g u i + j = 1 p A i j u j = U 2 - 2 u i for all i = 1 , , p , where Δ g is the Laplace-Beltrami operator, A is a C 1 -map from M into the space M s p ( ) of symmetric p × p matrices with real entries, the A i j ’s are the components of A , U = ( u 1 , , u p ) , | U | : M is the Euclidean norm of U , 2 = 2 n n - 2 is the critical Sobolev exponent, and we require that u i 0 in M for all i = 1 , , p . We...

Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain

Valeria Banica (2003)

Journées équations aux dérivées partielles

We concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound from below the blow-up rate for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than ( T - t ) - 1 , the expected one. Moreover, we state that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.

Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain

Valeria Banica (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than ( T - t ) - 1 , the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.

Solutions globales de l’équation des ondes semi-linéaire critique à coefficients variables

Slim Ibrahim, Mohamed Majdoub (2003)

Bulletin de la Société Mathématique de France

Dans ce travail, on s’intéresse à l’existence globale de solutions classiques et au sens de Shatah-Struwe de l’équation des ondes critique à coefficients variables en dimension d d’espace A u + | u | 4 / ( d - 2 ) u = t 2 u - div ( A ( x ) · x u ) + | u | 4 / ( d - 2 ) u = 0 , t × x d , A est une fonction régulière à valeurs dans les matrices d × d définies positives, valant l’identité en dehors d’un compact fixe.

Stabilisation exponentielle d’une équation des poutres d’Euler-Bernoulli à coefficients variables

My Driss Aouragh, Naji Yebari (2009)

Annales mathématiques Blaise Pascal

Dans ce travail, nous étudions la propriété de base de Riesz et la stabilisation exponentielle pour une équation des poutres d’Euler-Bernoulli à coefficients variables sous un contrôle frontière linéaire dépendant de la position (resp. l’angle de rotation), de la vitesse et de la vitesse de rotation dans le contrôle force (resp. moment). Nous montrons qu’il existe une suite de fonctions propres généralisées qui forme une base de Riesz de l’espace d’énergie considéré, et qu’il y a stabilité exponentielle...

Trudinger–Moser inequality on the whole plane with the exact growth condition

Slim Ibrahim, Nader Masmoudi, Kenji Nakanishi (2015)

Journal of the European Mathematical Society

Trudinger-Moser inequality is a substitute to the (forbidden) critical Sobolev embedding, namely the case where the scaling corresponds to L . It is well known that the original form of the inequality with the sharp exponent (proved by Moser) fails on the whole plane, but a few modied versions are available. We prove a precised version of the latter, giving necessary and sufficient conditions for the boundedness, as well as for the compactness, in terms of the growth and decay of the nonlinear function....

Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle (2012)

Journal of the European Mathematical Society

Following our previous paper in the radial case, we consider type II blow-up solutions to the energy-critical focusing wave equation. Let W be the unique radial positive stationary solution of the equation. Up to the symmetries of the equation, under an appropriate smallness assumption, any type II blow-up solution is asymptotically a regular solution plus a rescaled Lorentz transform of W concentrating at the origin.

Weak linking theorems and Schrödinger equations with critical Sobolev exponent

Martin Schechter, Wenming Zou (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation - Δ u + V ( x ) u = K ( x ) | u | 2 * - 2 u + g ( x , u ) , u W 1 , 2 ( 𝐑 N ) , where N 4 ; V , K , g are periodic in x j for 1 j N and 0 is in a gap of the spectrum of - Δ + V ; K > 0 . If 0 < g ( x , u ) u c | u | 2 * for an appropriate constant c , we show that this equation has a nontrivial solution.

Weak Linking Theorems and Schrödinger Equations with Critical Sobolev Exponent

Martin Schechter, Wenming Zou (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation - Δ u + V ( x ) u = K ( x ) | u | 2 * - 2 u + g ( x , u ) , u W 1 , 2 ( 𝐑 N ) , where N ≥ 4; V,K,g are periodic in xj for 1 ≤ j ≤ N and 0 is in a gap of the spectrum of -Δ + V; K>0. If 0 < g ( x , u ) u c | u | 2 * for an appropriate constant c, we show that this equation has a nontrivial solution.

Currently displaying 101 – 120 of 120

Previous Page 6