On critical exponents for a system of heat equations coupled in the boundary conditions.
We study the asymptotic behavior of as , where is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case)withWe discuss the cases in which the state of the system is required to stay in an -dimensional torus, called periodic boundary conditions, or in the closure of a bounded connected domain with sufficiently smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann boundary conditions (reflection on the boundary)...
We study the asymptotic behavior of as , where is the viscosity solution of the following Hamilton-Jacobi-Isaacs equation (infinite horizon case) with We discuss the cases in which the state of the system is required to stay in an n-dimensional torus, called periodic boundary conditions, or in the closure of a bounded connected domain with sufficiently smooth boundary. As far as the latter is concerned, we treat both the case of the Neumann boundary conditions (reflection on the...
We give new and simple sufficient conditions for Gaussian upper bounds for a convolution semigroup on a unimodular locally compact group. These conditions involve certain semigroup estimates in L²(G). We describe an application for estimates of heat kernels of complex subelliptic operators on unimodular Lie groups.
We investigate stationary solutions and asymptotic behaviour of solutions of two boundary value problems for semilinear parabolic equations. These equations involve both blow up and damping terms and they were studied by several authors. Our main goal is to fill some gaps in these studies.
We prove that the 3D cubic defocusing semi-linear wave equation is globally well-posed for data in the Sobolev space Hs where s > 3/4. This result was obtained in [11] following Bourgain's method ([3]). We present here a different and somewhat simpler argument, inspired by previous work on the Navier-Stokes equations ([4, 7]).
This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in . Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound
A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a -dimensional cone is given, where is an arbitrary open cone in and .
Given a homogeneous elliptic partial differential operator L of order two with constant complex coefficients in R2, we consider entire solutions of the equation Lu = 0 for whichlimr→∞ u(reiφ) =: U(eiφ)exists for all φ ∈ [0; 2π) as a finite limit in C. We characterize the possible "radial limit functions" U. This is an analog of the work of A. Roth for entire holomorphic functions. The results seems new even for harmonic functions.
This paper contains some results concerning self-similar radial solutions for some system of chemotaxis. This kind of solutions describe asymptotic profiles of arbitrary solutions with small mass. Our approach is based on a fixed point analysis for an appropriate integral operator acting on a suitably defined convex subset of some cone in the space of bounded and continuous functions.