Displaying 841 – 860 of 1422

Showing per page

On optimal decay rates for weak solutions to the Navier-Stokes equations in R n

Tetsuro Miyakawa, Maria Elena Schonbek (2001)

Mathematica Bohemica

This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in n . Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound u ( t ) ( t + 1 ) - n + 4 2 .

On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in K d × R n - d , where K d is a d-dimensional cone

Vladimir A. Kozlov, Vladimir G. Maz'ya (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a n -dimensional cone K = K d × R n - d is given, where K d is an arbitrary open cone in R d and n > d > 1 .

On radial limit functions for entire solutions of second order elliptic equations in R2.

André Boivin, Peter V. Paramonov (1998)

Publicacions Matemàtiques

Given a homogeneous elliptic partial differential operator L of order two with constant complex coefficients in R2, we consider entire solutions of the equation Lu = 0 for whichlimr→∞ u(reiφ) =: U(eiφ)exists for all φ ∈ [0; 2π) as a finite limit in C. We characterize the possible "radial limit functions" U. This is an analog of the work of A. Roth for entire holomorphic functions. The results seems new even for harmonic functions.

On radially symmetric solutions of some chemotaxis system

Robert Stańczy (2009)

Banach Center Publications

This paper contains some results concerning self-similar radial solutions for some system of chemotaxis. This kind of solutions describe asymptotic profiles of arbitrary solutions with small mass. Our approach is based on a fixed point analysis for an appropriate integral operator acting on a suitably defined convex subset of some cone in the space of bounded and continuous functions.

On rates of propagation for Burgers’ equation

William Alan Day, Giuseppe Saccomandi (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give asymptotic formulae for the propagation of an initial disturbance of the Burgers’ equation.

On solutions of a perturbed fast diffusion equation

Ján Filo (1987)

Aplikace matematiky

The paper concerns the (local and global) existence, nonexistence, uniqueness and some properties of nonnegative solutions of a nonlinear density dependent diffusion equation with homogeneous Dirichlet boundary conditions.

On solutions of the Schrödinger equation with radiation conditions at infinity : the long-range case

Yannick Gâtel, Dimitri Yafaev (1999)

Annales de l'institut Fourier

We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.

On stabilization and control for the critical Klein-Gordon equation on a 3-D compact manifold

Camille Laurent (2011)

Journées Équations aux dérivées partielles

We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on 3 , is performed by taking care of possible...

On the asymptotic behavior for convection-diffusion equations associated to higher order elliptic operators in divergence form.

Mokhtar Kirane, Mahmoud Qafsaoui (2002)

Revista Matemática Complutense

We consider the linear convection-diffusion equation associated to higher order elliptic operators⎧  ut + Ltu = a∇u   on Rnx(0,∞)⎩  u(0) = u0 ∈ L1(Rn),where a is a constant vector in Rn, m ∈ N*, n ≥ 1 and L0 belongs to a class of higher order elliptic operators in divergence form associated to non-smooth bounded measurable coefficients on Rn. The aim of this paper is to study the asymptotic behavior, in Lp (1 ≤ p ≤ ∞), of the derivatives Dγu(t) of the solution of the convection-diffusion equation...

Currently displaying 841 – 860 of 1422