On Maximal Functions and Parabolic Limits.
This paper is concerned with optimal lower bounds of decay rates for solutions to the Navier-Stokes equations in . Necessary and sufficient conditions are given such that the corresponding Navier-Stokes solutions are shown to satisfy the algebraic bound
A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a -dimensional cone is given, where is an arbitrary open cone in and .
Given a homogeneous elliptic partial differential operator L of order two with constant complex coefficients in R2, we consider entire solutions of the equation Lu = 0 for whichlimr→∞ u(reiφ) =: U(eiφ)exists for all φ ∈ [0; 2π) as a finite limit in C. We characterize the possible "radial limit functions" U. This is an analog of the work of A. Roth for entire holomorphic functions. The results seems new even for harmonic functions.
This paper contains some results concerning self-similar radial solutions for some system of chemotaxis. This kind of solutions describe asymptotic profiles of arbitrary solutions with small mass. Our approach is based on a fixed point analysis for an appropriate integral operator acting on a suitably defined convex subset of some cone in the space of bounded and continuous functions.
We give asymptotic formulae for the propagation of an initial disturbance of the Burgers’ equation.
The paper concerns the (local and global) existence, nonexistence, uniqueness and some properties of nonnegative solutions of a nonlinear density dependent diffusion equation with homogeneous Dirichlet boundary conditions.
We consider the homogeneous Schrödinger equation with a long-range potential and show that its solutions satisfying some a priori bound at infinity can asymptotically be expressed as a sum of incoming and outgoing distorted spherical waves. Coefficients of these waves are related by the scattering matrix. This generalizes a similar result obtained earlier in the short-range case.
We study the asymptotic behaviour near infinity of the weak solutions of the Cauchy-problem.
We study the internal stabilization and control of the critical nonlinear Klein-Gordon equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical geometric control condition, we prove exponential decay for some solutions bounded in the energy space but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This profile decomposition, analogous to the one of Bahouri-Gérard [2] on , is performed by taking care of possible...
We consider the linear convection-diffusion equation associated to higher order elliptic operators⎧ ut + Ltu = a∇u on Rnx(0,∞)⎩ u(0) = u0 ∈ L1(Rn),where a is a constant vector in Rn, m ∈ N*, n ≥ 1 and L0 belongs to a class of higher order elliptic operators in divergence form associated to non-smooth bounded measurable coefficients on Rn. The aim of this paper is to study the asymptotic behavior, in Lp (1 ≤ p ≤ ∞), of the derivatives Dγu(t) of the solution of the convection-diffusion equation...