Le problème de Cauchy à caractéristiques multiples
Yujiro Ohya (1977)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
J. Ginibre, G. Velo (1995/1996)
Séminaire Équations aux dérivées partielles (Polytechnique)
S. Miyatake (1978/1979)
Séminaire Équations aux dérivées partielles (Polytechnique)
Jacques Chazarain (1972/1973)
Séminaire Bourbaki
A. Voigt (1974/1975)
Numerische Mathematik
Neil S. Trudinger (1973)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Irina Kmit (2007)
Commentationes Mathematicae Universitatis Carolinae
We study one-dimensional linear hyperbolic systems with -coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.
Juraj Földes (2011)
Czechoslovak Mathematical Journal
In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
D. Andreucci, M. A. Herrero, J. J. L. Velázquez (1997)
Annales de l'I.H.P. Analyse non linéaire
Kogoj, Alessia Elisabetta, Lanconelli, Ermanno (2007)
Boundary Value Problems [electronic only]
Michael Meier (1979)
Manuscripta mathematica
Thomas Bartsch, Peter Poláčik, Pavol Quittner (2011)
Journal of the European Mathematical Society
We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation . We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence of steady states and time-periodic solutions are also shown.
Ganghua Yuan, Masahiro Yamamoto (2009)
ESAIM: Control, Optimisation and Calculus of Variations
Let be one solution towith a non-homogeneous term , and , where is a bounded domain. We discuss an inverse problem of determining unknown functions by , after selecting input sources suitably, where is an arbitrary subboundary, denotes the normal derivative, and . In the case of , we prove the Lipschitz stability in the inverse problem if we choose from a set with an arbitrarily fixed subdomain . Moreover we can take by making special choices for , . The proof is...
Ganghua Yuan, Masahiro Yamamoto (2008)
ESAIM: Control, Optimisation and Calculus of Variations
Let y(h)(t,x) be one solution to with a non-homogeneous term h, and , where is a bounded domain. We discuss an inverse problem of determining n(n+1)/2 unknown functions aij by , after selecting input sources suitably, where is an arbitrary subboundary, denotes the normal derivative, and . In the case of , we prove the Lipschitz stability in the inverse problem if we choose from a set with an arbitrarily fixed subdomain . Moreover we can take by making special choices for...
E. Fabes, S. Sroka, K.-O. Widman (1979)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Jorge Hounie, Maria E. Moraes Melo (1997)
Manuscripta mathematica
Fu, Yongqiang, Pan, Ning (2010)
Journal of Inequalities and Applications [electronic only]
Neil S. Trudinger (1980)
Inventiones mathematicae
Н.М. Ивочкина (1995)
Zapiski naucnych seminarov POMI
Hongya, Gao, Jinjing, Qiao, Yuming, Chu (2010)
Journal of Inequalities and Applications [electronic only]