A refinement of the Poincaré inequality for Kolmogorov operators on .
We examine the p-harmonic equation div |grad u|(p-2). grad u = mu, where mu is a bounded Radon measure. We determine a range of p's for which solutions to the equation verify an a priori estimate. For such p's we also prove a higher integrability result.
We prove a sharp bilinear estimate for the wave equation from which we obtain the sharp constant in the Strichartz estimate which controls the norm of the solution in terms of the energy. We also characterise the maximisers.
We review the recent results for boundary value problems with boundary conditions given by second-order integral-differential operators. Particular attention has been paid to nonlinear problems (without integral terms in the boundary conditions) for elliptic and parabolic equations. For these problems we formulate some statements concerning a priori estimates and the existence theorems in Sobolev and Hölder spaces.
This is a report on project initiated with Anne Nouri [3], presently in progress, with the collaboration of Nicolas Besse [2] ([2] is mainly the material of this report) . It concerns a version of the Vlasov equation where the self interacting potential is replaced by a Dirac mass. Emphasis is put on the relations between the linearized version, the full non linear problem and also on natural connections with several other equations of mathematical physic.
We give an expository review of recent results obtained for elliptic equations having natural growth terms of absorption type and singular data. As a new result, we provide an application to the case of lower order terms of subcritical growth, proving a general solvability result with measure data for a class of equations modeled on (1.6).
Global existence results and long time behavior are provided for a mathematical model describing the propagation of Feline Panleucopenia Virus (FPLV) within a domestic cat population; two transmission modes are involved: a direct one from infective cats to susceptible ones, and an indirect one from the contaminated environment to susceptible cats. A more severe impact of the virus on young cats requires an age-structured model.