Displaying 2201 – 2220 of 5234

Showing per page

Laplace asymptotics for generalized K.P.P. equation

Jean-Philippe Rouquès (2010)

ESAIM: Probability and Statistics

Consider a one dimensional nonlinear reaction-diffusion equation (KPP equation) with non-homogeneous second order term, discontinuous initial condition and small parameter. For points ahead of the Freidlin-KPP front, the solution tends to 0 and we obtain sharp asymptotics (i.e. non logarithmic). Our study follows the work of Ben Arous and Rouault who solved this problem in the homogeneous case. Our proof is probabilistic, and is based on the Feynman-Kac formula and the large deviation principle...

Large data local solutions for the derivative NLS equation

Ioan Bejenaru, Daniel Tataru (2008)

Journal of the European Mathematical Society

We consider the derivative NLS equation with general quadratic nonlinearities. In [2] the first author has proved a sharp small data local well-posedness result in Sobolev spaces with a decay structure at infinity in dimension n = 2 . Here we prove a similar result for large initial data in all dimensions n 2 .

Large time behavior in a density-dependent population dynamics problem with age structure and child care

Vladas Skakauskas (2003)

Banach Center Publications

Two asexual density-dependent population dynamics models with age-dependence and child care are presented. One of them includes the random diffusion while in the other the population is assumed to be non-dispersing. The population consists of the young (under maternal care), juvenile, and adult classes. Death moduli of the juvenile and adult classes in both models are decomposed into the sum of two terms. The first presents death rate by the natural causes while the other describes the environmental...

Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system

Yutaro Chiyo (2023)

Archivum Mathematicum

This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.

Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems

Stephan Luckhaus, Yoshie Sugiyama (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the following reaction-diffusion equation: ( KS ) u t = · u m - u q - 1 v , x N , 0 < t < , 0 = Δ v - v + u , x N , 0 < t < , u ( x , 0 ) = u 0 ( x ) , x N , where N 1 , m > 1 , q max { m + 2 N , 2 } .
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)] it was shown that in the case of q max { m + 2 N , 2 } , the above problem (KS) is solvable globally in time for “small L N ( q - m ) 2 data”. Moreover, the decay of the solution (u,v) in L p ( N ) was proved. In this paper, we consider the case of “ q max { m + 2 N , 2 } and small L data” with any fixed N ( q - m ) 2 and show that (i) there exists a time global solution (u,v) of (KS) and it decays to...

Currently displaying 2201 – 2220 of 5234