Aleksandrov-type estimates for a parabolic Monge-Ampère equation.
We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated to the equation,...
We also prove a long time existence result; more precisely we prove that for fixed there exists a set , such that any data , evolves up to time into a solution with , . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space , that is in the supercritical scaling regime.
Two-scale convergence is a special weak convergence used in homogenization theory. Besides the original definition by Nguetseng and Allaire two alternative definitions are introduced and compared. They enable us to weaken requirements on the admissibility of test functions . Properties and examples are added.
Global existence results and long time behavior are provided for a mathematical model describing the propagation of Feline Panleucopenia Virus (FPLV) within a domestic cat population; two transmission modes are involved: a direct one from infective cats to susceptible ones, and an indirect one from the contaminated environment to susceptible cats. A more severe impact of the virus on young cats requires an age-structured model.