Displaying 21 – 40 of 212

Showing per page

L1 and L∞-estimates with a local weight for the ∂-equation on convex domains in Cn.

Francesc Tugores (1992)

Publicacions Matemàtiques

We construct a defining function for a convex domain in Cn that we use to prove that the solution-operator of Henkin-Romanov for the ∂-equation is bounded in L1 and L∞-norms with a weight that reflects not only how near the point is to the boundary of the domain but also how convex the domain is near the point. We refine and localize the weights that Polking uses in [Po] for the same type of domains because they depend only on the Euclidean distance to the boudary and don't take into account the...

Laplace asymptotics for generalized K.P.P. equation

Jean-Philippe Rouquès (2010)

ESAIM: Probability and Statistics

Consider a one dimensional nonlinear reaction-diffusion equation (KPP equation) with non-homogeneous second order term, discontinuous initial condition and small parameter. For points ahead of the Freidlin-KPP front, the solution tends to 0 and we obtain sharp asymptotics (i.e. non logarithmic). Our study follows the work of Ben Arous and Rouault who solved this problem in the homogeneous case. Our proof is probabilistic, and is based on the Feynman-Kac formula and the large deviation principle...

Large data local solutions for the derivative NLS equation

Ioan Bejenaru, Daniel Tataru (2008)

Journal of the European Mathematical Society

We consider the derivative NLS equation with general quadratic nonlinearities. In [2] the first author has proved a sharp small data local well-posedness result in Sobolev spaces with a decay structure at infinity in dimension n = 2 . Here we prove a similar result for large initial data in all dimensions n 2 .

Currently displaying 21 – 40 of 212