Displaying 121 – 140 of 5232

Showing per page

A mathematical model of suspension bridges

Gabriela Liţcanu (2004)

Applications of Mathematics

We prove the existence of weak T-periodic solutions for a nonlinear mathematical model associated with suspension bridges. Under further assumptions a regularity result is also given.

A maximum principle for systems with variational structure and an application to standing waves

Nicholas D. Alikakos, Giorgio Fusco (2015)

Journal of the European Mathematical Society

We establish via variational methods the existence of a standing wave together with an estimate on the convergence to its asymptotic states for a bistable system of partial differential equations on a periodic domain. The main tool is a replacement lemma which has as a corollary a maximum principle for minimizers.

A method for treating a class of non­linear diffusion problems

Stavros Busenberg, Mimmo Iannelli (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si presenta un metodo di soluzione di una classe di problemi di diffusione nonlineare che hanno origine dalla teoria delle popolazioni con struttura di età.

A model problem for boundary layers of thin elastic shells

Philippe Karamian, Jacqueline Sanchez-Hubert, Évarisite Sanchez Palencia (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a model problem (with constant coefficients and simplified geometry) for the boundary layer phenomena which appear in thin shell theory as the relative thickness ε of the shell tends to zero. For ε = 0 our problem is parabolic, then it is a model of developpable surfaces. Boundary layers along and across the characteristic have very different structure. It also appears internal layers associated with propagations of singularities along the characteristics. The special structure of...

A multiscale correction method for local singular perturbations of the boundary

Marc Dambrine, Grégory Vial (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution uE of a second order elliptic equation posed in the perturbed domain with respect to the size parameter ε of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of uE based on a multiscale superposition of the unperturbed solution u0 and a profile defined in a model domain. We...

Currently displaying 121 – 140 of 5232