Displaying 161 – 180 of 5232

Showing per page

A nonlocal elliptic equation in a bounded domain

Piotr Fijałkowski, Bogdan Przeradzki, Robert Stańczy (2004)

Banach Center Publications

The existence of a positive solution to the Dirichlet boundary value problem for the second order elliptic equation in divergence form - i , j = 1 n D i ( a i j D j u ) = f ( u , Ω g ( u p ) ) , in a bounded domain Ω in ℝⁿ with some growth assumptions on the nonlinear terms f and g is proved. The method based on the Krasnosel’skiĭ Fixed Point Theorem enables us to find many solutions as well.

A note on bounds for non-linear multivalued homogenized operators

Nils Svanstedt (1998)

Applications of Mathematics

In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis.

A Note on Div-Curl Lemma

Gala, Sadek (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 42B30, 46E35, 35B65.We prove two results concerning the div-curl lemma without assuming any sort of exact cancellation, namely the divergence and curl need not be zero, and d i v ( u v ) H 1 ( R d ) which include as a particular case, the result of [3].

A note on maximal estimates for stochastic convolutions

Mark Veraar, Lutz Weis (2011)

Czechoslovak Mathematical Journal

In stochastic partial differential equations it is important to have pathwise regularity properties of stochastic convolutions. In this note we present a new sufficient condition for the pathwise continuity of stochastic convolutions in Banach spaces.

A note on measure-valued solutions to the full Euler system

Václav Mácha, Emil Wiedemann (2022)

Applications of Mathematics

We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.

Currently displaying 161 – 180 of 5232