Global Regularity of Solutions of Nonlinear Second Order Elliptic and Parabolic Differential Equations.
We consider a class of possibly degenerate second order elliptic operators on ℝⁿ. This class includes hypoelliptic Ornstein-Uhlenbeck type operators having an additional first order term with unbounded coefficients. We establish global Schauder estimates in Hölder spaces both for elliptic equations and for parabolic Cauchy problems involving . The Hölder spaces in question are defined with respect to a possibly non-Euclidean metric related to the operator . Schauder estimates are deduced by sharp...
We study the chemotaxis system with singular sensitivity and logistic-type source: , under the non-flux boundary conditions in a smooth bounded domain , , and . It is shown with that the system possesses a global generalized solution for which is bounded when is suitably small related to and the initial datum is properly small, and a global bounded classical solution for .
We consider the damped wave equation on the whole real line, where is a bistable potential. This equation has travelling front solutions of the form which describe a moving interface between two different steady states of the system, one of which being the global minimum of . We show that, if the initial data are sufficiently close to the profile of a front for large , the solution of the damped wave equation converges uniformly on to a travelling front as . The proof of this global stability...