Previous Page 2

Displaying 21 – 26 of 26

Showing per page

Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems

Markus Aurada, Michael Feischl, Dirk Praetorius (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive...

Convergence of some adaptive FEM-BEM coupling for elliptic but possibly nonlinear interface problems

Markus Aurada, Michael Feischl, Dirk Praetorius (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h − h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive...

Crack detection using electrostatic measurements

Martin Brühl, Martin Hanke, Michael Pidcock (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we extend recent work on the detection of inclusions using electrostatic measurements to the problem of crack detection in a two-dimensional object. As in the inclusion case our method is based on a factorization of the difference between two Neumann-Dirichlet operators. The factorization possible in the case of cracks is much simpler than that for inclusions and the analysis is greatly simplified. However, the directional information carried by the crack makes the practical implementation...

Crack detection using electrostatic measurements

Martin Brühl, Martin Hanke, Michael Pidcock (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we extend recent work on the detection of inclusions using electrostatic measurements to the problem of crack detection in a two-dimensional object. As in the inclusion case our method is based on a factorization of the difference between two Neumann-Dirichlet operators. The factorization possible in the case of cracks is much simpler than that for inclusions and the analysis is greatly simplified. However, the directional information carried by the crack makes the practical...

Currently displaying 21 – 26 of 26

Previous Page 2