Permanence of metric fractals.
We shall characterize the sets of locally uniform convergence of pointwise convergent sequences. Results obtained for sequences of holomorphic functions by Hartogs and Rosenthal in 1928 will be generalized for many other sheaves of functions. In particular, our Hartogs-Rosenthal type theorem holds for the sheaf of solutions to the second order elliptic PDE's as well as it has applications to the theory of harmonic spaces.
L’article étudie le compactifié de Martin d’un domaine lipschitzien relativement à un opérateur elliptique à coefficients hödériens ; on étend aux fonctions -harmoniques et aux fonctions -harmoniques adjointes sur une estimation de -Carleson pour le cas , puis on établit un “principe de Harnack à la frontière” comparant l’allure à la frontière de fonctions -harmoniques sur . Conséquences : , et normalisée en ; un théorème de type Fatou-Doob sur l’existence de limites angulaires.On...
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation where the left-hand side is a Leray-Lions operator from into with , is a Carathéodory function which grows like and is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of .
We study a form of optimal transportation surplus functions which arise in hedonic pricing models. We derive a formula for the Ma–Trudinger–Wang curvature of these functions, yielding necessary and sufficient conditions for them to satisfy (A3w). We use this to give explicit new examples of surplus functions satisfying (A3w), of the form b(x,y) = H(x + y) where H is a convex function on ℝn. We also show that the distribution of equilibrium contracts in this hedonic pricing model is absolutely continuous...
We examine the composition of the L∞ norm with weakly convergent sequences of gradient fields associated with the homogenization of second order divergence form partial differential equations with measurable coefficients. Here the sequences of coefficients are chosen to model heterogeneous media and are piecewise constant and highly oscillatory. We identify local representation formulas that in the fine phase limit provide upper bounds on the limit superior of the L∞ norms of gradient fields. The...
We examine the composition of the L∞ norm with weakly convergent sequences of gradient fields associated with the homogenization of second order divergence form partial differential equations with measurable coefficients. Here the sequences of coefficients are chosen to model heterogeneous media and are piecewise constant and highly oscillatory. We identify local representation formulas that in the fine phase limit provide upper bounds on the limit...
We study existence, uniqueness, and smoothing properties of the solutions to a class of linear second order elliptic and parabolic differential equations with unbounded coefficients in . The main results are global Schauder estimates, which hold in spite of the unboundedness of the coefficients.