Page 1

Displaying 1 – 17 of 17

Showing per page

Caccioppoli estimates and very weak solutions of elliptic equations

Tadeusz Iwaniec, Carlo Sbordone (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Caccioppoli estimates are instrumental in virtually all analytic aspects of the theory of partial differential equations, linear and nonlinear. And there is always something new to add to these estimates. We emphasize the fundamental role of the natural domain of definition of a given differential operator and the associated weak solutions. However, we depart from this usual setting (energy estimates) and move into the realm of the so-called very weak solutions where important new applications lie....

Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux)

Pascal Auscher, Philippe Tchamitchian (1995)

Annales de l'institut Fourier

Dans cet article, on considère les opérateurs différentiels T = b ( x ) D ( a ( x ) D ) , où a ( x ) et b ( x ) sont deux fonctions mesurables, bornées et accrétives, et D = - i d d x . Les résultats principaux portent sur les propriétés fonctionnelles de T , de sa racine carrée, avec applications à l’équation elliptique t 2 u - T u = 0 sur × [ 0 , + [ . On démontre que T 1 / 2 D - 1 est un opérateur de Calderón-Zygmund qui dépend analytiquement du couple ( a , b ) . Les estimations ponctuelles optimales sur le noyau du semi-groupe exp ( - t L 1 / 2 ) et le calcul fonctionnel permettent de développer une théorie...

Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces

Sergey I. Repin, Tatiana S. Samrowski, Stéfan A. Sauter (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of...

Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces

Sergey I. Repin, Tatiana S. Samrowski, Stéfan A. Sauter (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of...

Combined a posteriori modeling-discretization error estimate for elliptic problems with complicated interfaces

Sergey I. Repin, Tatiana S. Samrowski, Stéfan A. Sauter (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider linear elliptic problems with variable coefficients, which may sharply change values and have a complex behavior in the domain. For these problems, a new combined discretization-modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating the original one with increasing accuracy. Boundary value problems generated by these simplified models are solved numerically, and the approximation and modeling errors are estimated by a posteriori estimates of...

Conjetura de Kato sobre los abiertos de R.

Pascal Auscher, Philippe Tchamitchian (1992)

Revista Matemática Iberoamericana

We prove Kato's conjecture for second order elliptic differential operators on an open set in dimension 1 with arbitrary boundary conditions. The general case reduces to studying the operator T = - d/dx a(x) d/dx on an interval, when a(x) is a bounded and accretive function. We show for the latter situation that the domain of T is spanned by an unconditional basis of wavelets with cancellation properties that compensate the action of the non-regular function a(x).

Continuity of solutions of linear, degenerate elliptic equations

Jani Onninen, Xiao Zhong (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider the simplest form of a second order, linear, degenerate, elliptic equation with divergence structure in the plane. Under an integrability condition on the degenerate function, we prove that the solutions are continuous.

Controesempi sulla regolarità delle derivate delle soluzioni di equazioni ellittiche

Maurizio Chicco (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We give some counterexamples concerning the regularity of the first (resp. second) derivatives of solutions of linear second order elliptic partial differential equations in divergence form (resp. in non-divergence form).

Control for Schrödinger operators on 2-tori: rough potentials

Jean Bourgain, Nicolas Burq, Maciej Zworski (2013)

Journal of the European Mathematical Society

For the Schrödinger equation, ( i t + ) u = 0 on a torus, an arbitrary non-empty open set Ω provides control and observability of the solution: u t = 0 L 2 ( 𝕋 2 ) K T u L 2 ( [ 0 , T ] × Ω ) . We show that the same result remains true for ( i t + - V ) u = 0 where V L 2 ( 𝕋 2 ) , and 𝕋 2 is a (rational or irrational) torus. That extends the results of [1], and [8] where the observability was proved for V C ( 𝕋 2 ) and conjectured for V L ( 𝕋 2 ) . The higher dimensional generalization remains open for V L ( 𝕋 n ) .

Currently displaying 1 – 17 of 17

Page 1