Displaying 541 – 560 of 1240

Showing per page

Local Lipschitz continuity of solutions of non-linear elliptic differential-functional equations

Pierre Bousquet (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The object of this paper is to prove existence and regularity results for non-linear elliptic differential-functional equations of the form div a ( u ) + F [ u ] ( x ) = 0 , over the functions u W 1 , 1 ( Ω ) that assume given boundary values ϕ on ∂Ω. The vector field a : n n satisfies an ellipticity condition and for a fixed x, F[u](x) denotes a non-linear functional of u. In considering the same problem, Hartman and Stampacchia [Acta Math.115 (1966) 271–310] have obtained existence results in the space of uniformly Lipschitz continuous functions...

Lower and upper bounds for the Rayleigh conductivity of a perforated plate

S. Laurens, S. Tordeux, A. Bendali, M. Fares, P. R. Kotiuga (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Lower and upper bounds for the Rayleigh conductivity of a perforation in a thick plate are usually derived from intuitive approximations and by physical reasoning. This paper addresses a mathematical justification of these approaches. As a byproduct of the rigorous handling of these issues, some improvements to previous bounds for axisymmetric holes are given as well as new estimates for tilted perforations. The main techniques are a proper use of the Dirichlet and Kelvin variational principlesin...

Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

Ayman Kachmar (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.

Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators

Dario Daniele Monticelli (2010)

Journal of the European Mathematical Society

We deal with maximum principles for a class of linear, degenerate elliptic differential operators of the second order. In particular the Weak and Strong Maximum Principles are shown to hold for this class of operators in bounded domains, as well as a Hopf type lemma, under suitable hypothesis on the degeneracy set of the operator. We derive, as consequences of these principles, some generalized maximum principles and an a priori estimate on the solutions of the Dirichlet problem for the linear equation....

Currently displaying 541 – 560 of 1240