A multigrid method for saddle point problems arising from mortar finite element discretizations.
The author studies the behaviour of a multi-level method that combines the Jacobi iterations and the correction by aggragation of unknowns. Our considerations are restricted to a simple one-dimensional example, which allows us to employ the technique of the Fourier analysis. Despite of this restriction we are able to demonstrate differences between the behaviour of the algorithm considered and of multigrid methods employing interpolation instead of aggregation.
In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution uE of a second order elliptic equation posed in the perturbed domain with respect to the size parameter ε of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of uE based on a multiscale superposition of the unperturbed solution u0 and a profile defined in a model domain. We...
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid...
The existence of a positive solution to the Dirichlet boundary value problem for the second order elliptic equation in divergence form , in a bounded domain Ω in ℝⁿ with some growth assumptions on the nonlinear terms f and g is proved. The method based on the Krasnosel’skiĭ Fixed Point Theorem enables us to find many solutions as well.
The paper analyzes the influence on the meaning of natural growth in the gradient of a perturbation by a Hardy potential in some elliptic equations. Indeed, in the case of the Laplacian the natural problem becomes in , on , . This problem is a particular case of problem (2). Notice that is optimal as coefficient and exponent on the right hand side.
The proof of the Friedrichs' inequality on the class of finite dimensional spaces used in the finite element method is given. In particular, the approximate spaces generated by simplicial isoparametric elements are considered.
We present a shift theorem for solutions of the Poisson equation in a finite planar cone (and hence also on plane polygons) for Dirichlet, Neumann, and mixed boundary conditions. The range in which the shift theorem holds depends on the angle of the cone. For the right endpoint of the range, the shift theorem is described in terms of Besov spaces rather than Sobolev spaces.
In this paper, we present extensive numerical tests showing the performance and robustness of a Balancing Neumann-Neumann method for the solution of algebraic linear systems arising from hp finite element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. The numerical results are in good agreement with the theoretical bound for the condition number of the preconditioned operator derived in [Toselli and Vasseur, IMA J. Numer. Anal.24 (2004)...