Displaying 601 – 620 of 1240

Showing per page

Multiscale expansion and numerical approximation for surface defects⋆

V. Bonnaillie-Noël, D. Brancherie, M. Dambrine, F. Hérau, S. Tordeux, G. Vial (2011)

ESAIM: Proceedings

This paper is a survey of articles [5, 6, 8, 9, 13, 17, 18]. We are interested in the influence of small geometrical perturbations on the solution of elliptic problems. The cases of a single inclusion or several well-separated inclusions have been deeply studied. We recall here techniques to construct an asymptotic expansion. Then we consider moderately close inclusions, i.e. the distance between the inclusions tends to zero more slowly than their characteristic size. We provide a complete asymptotic...

Natural boundary value problems for weighted form laplacians

Wojciech Kozłowski, Antoni Pierzchalski (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The four natural boundary problems for the weighted form Laplacians L = a d δ + b δ d , a , b > 0 acting on polynomial differential forms in the n -dimensional Euclidean ball are solved explicitly. Moreover, an algebraic algorithm for generating a solution from the boundary data is given in each case.

Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints

Eduardo Casas (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to prove the first and second order optimality conditions for some control problems governed by semilinear elliptic equations with pointwise control constraints and finitely many equality and inequality pointwise state constraints. To carry out the analysis we formulate a regularity assumption which is equivalent to the first order optimality conditions. Though the presence of pointwise state constraints leads to a discontinuous adjoint state, we prove that the optimal...

Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints

Eduardo Casas (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this paper is to prove the first and second order optimality conditions for some control problems governed by semilinear elliptic equations with pointwise control constraints and finitely many equality and inequality pointwise state constraints. To carry out the analysis we formulate a regularity assumption which is equivalent to the first order optimality conditions. Though the presence of pointwise state constraints leads to a discontinuous adjoint state, we prove that the optimal control...

New mixed finite volume methods for second order eliptic problems

Kwang Y. Kim (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce and analyze new mixed finite volume methods for second order elliptic problems which are based on H(div)-conforming approximations for the vector variable and discontinuous approximations for the scalar variable. The discretization is fulfilled by combining the ideas of the traditional finite volume box method and the local discontinuous Galerkin method. We propose two different types of methods, called Methods I and II, and show that they have distinct advantages over...

Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations

Qin Li, Qun Lin, Hehu Xie (2013)

Applications of Mathematics

The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, Q 1 rot , E Q 1 rot and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to...

Currently displaying 601 – 620 of 1240