A study of boundary value problem for an elliptic equation in Hölder spaces.
In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...
In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...
We consider a solution u of the homogeneous Dirichlet problem for a class of nonlinear elliptic equations in the form A(u) = g(x,u) + f, where the principal term is a Leray-Lions operator defined on W01,p (Ω). The function g(x,u) satisfies suitable growth assumptions, but no sign hypothesis on it is assumed. We prove that the rearrangement of u can be estimated by the solution of a problem whose data are radially symmetric.
We establish a uniqueness result for an overdetermined boundary value problem. We also raise a new question.
We shall prove a weak comparison principle for quasilinear elliptic operators that includes the negative -Laplace operator, where satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces.
We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be a priori deduced. We solve this problem for a particular but significant example....