On the Convergence of the Conjugate Gradient Method for Singular Capacitance Matrix Equations from the Neumann Problem of the Poisson Equation.
A.S.L. Shieh (1977/1978)
Numerische Mathematik
Chen, Zuchi, Xuan, Benjin (2002)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Jindřich Nečas (1973)
Commentationes Mathematicae Universitatis Carolinae
Jens Frehse (1973)
Manuscripta mathematica
Koshelev, Alexander Ivanovich (1986)
Equadiff 6
E. Sanchez-Palencia (2002)
ESAIM: Control, Optimisation and Calculus of Variations
We consider singular perturbation variational problems depending on a small parameter . The right hand side is such that the energy does not remain bounded as . The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after integrating...
E. Sanchez–Palencia (2010)
ESAIM: Control, Optimisation and Calculus of Variations
We consider singular perturbation variational problems depending on a small parameter ε. The right hand side is such that the energy does not remain bounded as ε → 0. The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after...
Peter Švaňa (1988)
Časopis pro pěstování matematiky
Н.Н. Тарханов (1984)
Sibirskij matematiceskij zurnal
Peter Wagner (1984)
Marc Durand (1975)
Bulletin de la Société Mathématique de France
Volpert, V., Volpert, A. (2003)
Abstract and Applied Analysis
Guy Métivier (1978)
Journées équations aux dérivées partielles
Mohamed Salah Baouendi, Johannes Sjöstrand (1974)
Journées équations aux dérivées partielles
M. S. Baouendi, J. Sjöstrand (1974/1975)
Séminaire Équations aux dérivées partielles (Polytechnique)
M. S. Baouendi, J. Sjostrand (1974)
Publications mathématiques et informatique de Rennes
Werner Stork (1978)
Mathematische Zeitschrift
Jan W. Cholewa, Tomasz Dlotko (2000)
Revista Matemática Complutense
Under natural regularity assumptions on the data the powers of regular elliptic boundary value problems (e.b.v.p.) are shown to be higher order regular e.b.v.p.. This result is used in description of the domains of fractional powers of elliptic operators which information is in order important in regularity considerations for solutions of semilinear parabolic equations. Presented approach allows to avoid C∞-smoothness assumption on the data that is typical in many references.
G. Barles (1988)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Werner Stork (1977)
Mathematica Scandinavica