Page 1

Displaying 1 – 17 of 17

Showing per page

On a class of nonlocal problem involving a critical exponent

Anass Ourraoui (2015)

Communications in Mathematics

In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal p -Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.

On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two

Jean Dolbeault, Régis Monneau (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in 2 . We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.

On nonoscillation of canonical or noncanonical disconjugate functional equations

Bhagat Singh (2000)

Czechoslovak Mathematical Journal

Qualitative comparison of the nonoscillatory behavior of the equations L n y ( t ) + H ( t , y ( t ) ) = 0 and L n y ( t ) + H ( t , y ( g ( t ) ) ) = 0 is sought by way of finding different nonoscillation criteria for the above equations. L n is a disconjugate operator of the form L n = 1 p n ( t ) d d t 1 p n - 1 ( t ) d d t ... d d t · p 0 ( t ) . Both canonical and noncanonical forms of L n have been studied.

On the structure of layers for singularly perturbed equations in the case of unbounded energy

E. Sanchez-Palencia (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider singular perturbation variational problems depending on a small parameter ε . The right hand side is such that the energy does not remain bounded as ε 0 . The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after integrating...

On the structure of layers for singularly perturbed equations in the case of unbounded energy

E. Sanchez–Palencia (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider singular perturbation variational problems depending on a small parameter ε. The right hand side is such that the energy does not remain bounded as ε → 0. The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after...

Currently displaying 1 – 17 of 17

Page 1