Existence of positive bounded solutions for some nonlinear polyharmonic elliptic systems.
We discuss the existence of positive radial solutions of the semilinear elliptic equation ⎧-Δu = K(|x|)f(u), x ∈ Ω ⎨αu + β ∂u/∂n = 0, x ∈ ∂Ω, ⎩, where , N ≥ 3, K: [r₀,∞) → ℝ⁺ is continuous and , f ∈ C(ℝ⁺,ℝ⁺), f(0) = 0. Under the conditions related to the asymptotic behaviour of f(u)/u at 0 and infinity, the existence of positive radial solutions is obtained. Our conditions are more precise and weaker than the superlinear or sublinear growth conditions. Our discussion is based on the fixed point...
Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω =...
In this paper we establish new nonlinear Liouville theorems for parabolic problems on half spaces. Based on the Liouville theorems, we derive estimates for the blow-up of positive solutions of indefinite parabolic problems and investigate the complete blow-up of these solutions. We also discuss a priori estimates for indefinite elliptic problems.
We deal with maximum principles for a class of linear, degenerate elliptic differential operators of the second order. In particular the Weak and Strong Maximum Principles are shown to hold for this class of operators in bounded domains, as well as a Hopf type lemma, under suitable hypothesis on the degeneracy set of the operator. We derive, as consequences of these principles, some generalized maximum principles and an a priori estimate on the solutions of the Dirichlet problem for the linear equation....
A type of adaptive finite element method is presented for semilinear elliptic problems based on multilevel correction scheme. The main idea of the method is to transform the semilinear elliptic equation into a sequence of linearized boundary value problems on the adaptive partitions and some semilinear elliptic problems on very low dimensional finite element spaces. Hence, solving the semilinear elliptic problem can reach almost the same efficiency as the adaptive method for the associated boundary...
An entire solution of the Allen-Cahn equation , where is an odd function and has exactly three zeros at and , e.g. , is called a end solution if its nodal set is asymptotic to half lines, and if along each of these half lines the function looks (up to a multiplication by ) like the one dimensional, odd, heteroclinic solution , of . In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions....