Displaying 201 – 220 of 850

Showing per page

Equations de von Kármán. I. Résultat d'existence pour les problèmes aux limites non homogènes.

Július Cibula (1984)

Aplikace matematiky

Dans l'article, on a défini une équation d'operateur équivalent à la formulation variationnelle du problème. Les solutions de cette équation sont des points critiques de la fonctionnelle qu'elle porte le nom d'énergie totale de déformation. La fonctionnelle est coercive et faiblement séquentiellement semi-continue inférieure. Par le théorème de l'analyse fonctionnelle, on a obtenu le résultat d'existence pour le problème.

Équations de von Kármán. II. Approximation de la solution

Július Cibula (1985)

Aplikace matematiky

Dans l'article, on a donné quelques conditions suffisantes pour l'unicité locale et globale de la solution du problème. On a construit une solution variationnelle du problème par la méthode de Newton-Kantorovitch et la méthode du prolongement continu avec ces conditions suffisantes pour l'unicité.

Équations elliptiques non linéaires monotones avec un deuxième membre L 1 ou mesure

François Murat (1998)

Journées équations aux dérivées partielles

On considère le problème : - div a ( x , D u ) = f dans Ω , u = 0 sur Ω , Ω est un ouvert borné de 𝐑 N , où a ( x , ξ ) est une fonction de Carathéodory, monotone en ξ , coercive, qui définit un opérateur dans W 0 1 , p ( Ω ) (avec 1 < p N ), et où f appartient à L 1 ( Ω ) ou est une mesure bornée sur Ω . On introduit une nouvelle définition de la solution de ce problème, la notion de solution renormalisée (ou entropique), et on montre l’existence d’une telle solution et sa continuité par rapport à f . Quand f appartient à L 1 ( Ω ) , on montre en outre que cette solution est unique.

Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition

Marian Slodička (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain Ω dim with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part Γ n . The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for the linearization...

Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition

Marian Slodička (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain Ω N with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part Γn. The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for...

Currently displaying 201 – 220 of 850