Anti-self-dual lagrangians : variational resolutions of non-self-adjoint equations and dissipative evolutions
For a fixed bounded open set , a sequence of open sets and a sequence of sets , we study the asymptotic behavior of the solution of a nonlinear elliptic system posed on , satisfying Neumann boundary conditions on and Dirichlet boundary conditions on . We obtain a representation of the limit problem which is stable by homogenization and we prove that this representation depends on and locally.
We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some regularity and the domain is for example convex, we also prove a nonlinear version of Courant’s Nodal theorem.
We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some regularity and the domain is for example convex, we also prove a nonlinear version of Courant's Nodal theorem.
We investigate the behaviour of a sequence , s = 1,2,..., of eigenvalues of the Dirichlet problem for the p-Laplacian in the domains , s = 1,2,..., obtained by removing from a given domain Ω a set whose diameter vanishes when s → ∞. We estimate the deviation of from the eigenvalue of the limit problem. For the derivation of our results we construct an appropriate asymptotic expansion for the sequence of solutions of the original eigenvalue problem.