Displaying 261 – 280 of 324

Showing per page

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Topological asymptotic analysis of the Kirchhoff plate bending problem

Samuel Amstutz, Antonio A. Novotny (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal domain perturbation, like the insertion of holes, inclusions, cracks. In this work we present the calculation of the topological derivative for a class of shape functionals associated to the Kirchhoff plate bending problem, when a circular inclusion is introduced at an arbitrary point of the domain. According to the literature, the topological derivative has been fully developed...

Topological degree, Jacobian determinants and relaxation

Irene Fonseca, Nicola Fusco, Paolo Marcellini (2005)

Bollettino dell'Unione Matematica Italiana

A characterization of the total variation T V u , Ω of the Jacobian determinant det D u is obtained for some classes of functions u : Ω R n outside the traditional regularity space W 1 , n Ω ; R n . In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity x 0 Ω . Relations between T V u , Ω and the distributional determinant Det D u are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals at maps u W 1 , p Ω ; R n W 1 , Ω x 0 ; R n .

Topological tools for the prescribed scalar curvature problem on S n

Dina Abuzaid, Randa Ben Mahmoud, Hichem Chtioui, Afef Rigane (2014)

Open Mathematics

In this paper, we consider the problem of the existence of conformal metrics with prescribed scalar curvature on the standard sphere S n, n ≥ 3. We give new existence and multiplicity results based on a new Euler-Hopf formula type. Our argument also has the advantage of extending well known results due to Y. Li [16].

Topology optimization of systems governed by variational inequalities

Andrzej Myśliński (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

This paper deals with the formulation of the necessary optimality condition for a topology optimization problem of an elastic body in unilateral contact with a rigid foundation. In the contact problem of Tresca, a given friction is governed by an elliptic variational inequality of the second order. The optimization problem consists in finding such topology of the domain occupied by the body that the normal contact stress along the contact boundary of the body is minimized. The topological derivative...

Currently displaying 261 – 280 of 324