Displaying 241 – 260 of 324

Showing per page

Theoretical and numerical study of a free boundary problem by boundary integral methods

Michel Crouzeix, Philippe Féat, Francisco-Javier Sayas (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.

Theoretical and numerical study of a free boundary problem by boundary integral methods

Michel Crouzeix, Philippe Féat, Francisco-Javier Sayas (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study a free boundary problem appearing in electromagnetism and its numerical approximation by means of boundary integral methods. Once the problem is written in a equivalent integro-differential form, with the arc parametrization of the boundary as unknown, we analyse it in this new setting. Then we consider Galerkin and collocation methods with trigonometric polynomial and spline curves as approximate solutions.

Theoretical aspects of a multiscale analysis of the eigenoscillations of the Earth.

Volker Michel (2003)

Revista Matemática Complutense

The elastic behaviour of the Earth, including its eigenoscillations, is usually described by the Cauchy-Navier equation. Using a standard approach in seismology we apply the Helmholtz decomposition theorem to transform the Fourier transformed Cauchy-Navier equation into two non-coupled Helmholtz equations and then derive sequences of fundamental solutions for this pair of equations using the Mie representation. Those solutions are denoted by the Hansen vectors Ln,j, Mn,j, and Nn,j in geophysics....

Theoretical foundation of the weighted Laplace inpainting problem

Laurent Hoeltgen, Andreas Kleefeld, Isaac Harris, Michael Breuss (2019)

Applications of Mathematics

Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers...

Three solutions for a nonlinear Neumann boundary value problem

Najib Tsouli, Omar Chakrone, Omar Darhouche, Mostafa Rahmani (2014)

Applicationes Mathematicae

The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann boundary-value problem involving the p(x)-Laplacian of the form - Δ p ( x ) u + a ( x ) | u | p ( x ) - 2 u = μ g ( x , u ) in Ω, | u | p ( x ) - 2 u / ν = λ f ( x , u ) on ∂Ω. Our technical approach is based on the three critical points theorem due to Ricceri.

Currently displaying 241 – 260 of 324