Displaying 41 – 60 of 737

Showing per page

A convergence result and numerical study for a nonlinear piezoelectric material in a frictional contact process with a conductive foundation

El-Hassan Benkhira, Rachid Fakhar, Youssef Mandyly (2021)

Applications of Mathematics

We consider two static problems which describe the contact between a piezoelectric body and an obstacle, the so-called foundation. The constitutive relation of the material is assumed to be electro-elastic and involves the nonlinear elastic constitutive Hencky's law. In the first problem, the contact is assumed to be frictionless, and the foundation is nonconductive, while in the second it is supposed to be frictional, and the foundation is electrically conductive. The contact is modeled with the...

A counterexample to Schauder estimates for elliptic operators with unbounded coefficients

Enrico Priola (2001)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck operator in a half space R + 2 of R 2 . We show that for a particular initial datum, which is Lipschitz continuous and bounded on R + 2 , the second derivative of the classical solution is not uniformly continuous on R + 2 . In particular this implies that the well known maximal Hölder-regularity results fail in general for Dirichlet problems in unbounded domains involving unbounded coefficients.

A counterexample to the L p -Hodge decomposition

Piotr Hajłasz (1996)

Banach Center Publications

We construct a bounded domain Ω 2 with the cone property and a harmonic function on Ω which belongs to W 0 1 , p ( Ω ) for all 1 ≤ p < 4/3. As a corollary we deduce that there is no L p -Hodge decomposition in L p ( Ω , 2 ) for all p > 4 and that the Dirichlet problem for the Laplace equation cannot be in general solved with the boundary data in W 1 , p ( Ω ) for all p > 4.

A diffused interface whose chemical potential lies in a Sobolev space

Yoshihiro Tonegawa (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study a singular perturbation problem arising in the scalar two-phase field model. Given a sequence of functions with a uniform bound on the surface energy, assume the Sobolev norms W 1 , p of the associated chemical potential fields are bounded uniformly, where p &gt; n 2 and n is the dimension of the domain. We show that the limit interface as ε tends to zero is an integral varifold with a sharp integrability condition on the mean curvature.

Currently displaying 41 – 60 of 737