Boundary behaviour of eigenfunctions of the Laplacian in a bi-tree.
We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system in a smooth bounded domain of , where is the p-Laplacian operator defined by with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.
Integral equations of boundary value problems of the logarithmic potential theory for a plane domain with several peaks at the boundary are studied. We present theorems on the unique solvability and asymptotic representations for solutions near peaks. We also find kernels of the integral operators in a class of functions with a weak power singularity and describe classes of uniqueness.
In this paper we discuss the approximate reconstruction of inhomogeneities of small volume. The data used for the reconstruction consist of boundary integrals of the (observed) electromagnetic fields. The numerical algorithms discussed are based on highly accurate asymptotic formulae for the electromagnetic fields in the presence of small volume inhomogeneities.
In this paper we discuss the approximate reconstruction of inhomogeneities of small volume. The data used for the reconstruction consist of boundary integrals of the (observed) electromagnetic fields. The numerical algorithms discussed are based on highly accurate asymptotic formulae for the electromagnetic fields in the presence of small volume inhomogeneities.