Regularity and free boundary regularity for the Laplacian in Lipschitz and domains.
We prove that plurisubharmonic solutions to certain boundary blow-up problems for the complex Monge-Ampère operator are Lipschitz continuous. We also prove that in certain cases these solutions are unique.
The purpose of this paper is to provide a method of reduction of some problems concerning families of linear operators with domains to a problem in which all the operators have the same domain . To do it we propose to construct a family of automorphisms of a given Banach space X having two properties: (i) the mapping is sufficiently regular and (ii) for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition with a parameter;...
We study regularity properties of the free boundary for the thin one-phase problem which consists of minimizing the energy functional among all functions which are fixed on .
I am presenting a survey of regularity results for both minima of variational integrals, and solutions to non-linear elliptic, and sometimes parabolic, systems of partial differential equations. I will try to take the reader to the Dark Side...
In this paper, we prove some regularity results for the boundary of an open subset of which minimizes the Dirichlet’s energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.
In this paper, we prove some regularity results for the boundary of an open subset of which minimizes the Dirichlet's energy among all open subsets with prescribed volume. In particular we show that, when the volume constraint is “saturated”, the reduced boundary of the optimal shape (and even the whole boundary in dimension 2) is regular if the state function is nonnegative.