Displaying 81 – 100 of 207

Showing per page

Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data

Andrea Dall'Aglio, Sergio Segura de León (2019)

Czechoslovak Mathematical Journal

We prove boundedness and continuity for solutions to the Dirichlet problem for the equation - div ( a ( x , u ) ) = h ( x , u ) + μ , in Ω N , where the left-hand side is a Leray-Lions operator from W 0 1 , p ( Ω ) into W - 1 , p ' ( Ω ) with 1 < p < N , h ( x , s ) is a Carathéodory function which grows like | s | p - 1 and μ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of μ .

Regularity of stable solutions of p -Laplace equations through geometric Sobolev type inequalities

Daniele Castorina, Manel Sanchón (2015)

Journal of the European Mathematical Society

We prove a Sobolev and a Morrey type inequality involving the mean curvature and the tangential gradient with respect to the level sets of the function that appears in the inequalities. Then, as an application, we establish a priori estimates for semistable solutions of Δ p u = g ( u ) in a smooth bounded domain Ω n . In particular, we obtain new L r and W 1 , r bounds for the extremal solution u when the domain is strictly convex. More precisely, we prove that u L ( Ω ) if n p + 2 and u L n p n - p - 2 ( Ω ) W 0 1 , p ( Ω ) if n > p + 2 .

Regularity properties of optimal transportation problems arising in hedonic pricing models

Brendan Pass (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study a form of optimal transportation surplus functions which arise in hedonic pricing models. We derive a formula for the Ma–Trudinger–Wang curvature of these functions, yielding necessary and sufficient conditions for them to satisfy (A3w). We use this to give explicit new examples of surplus functions satisfying (A3w), of the form b(x,y) = H(x + y) where H is a convex function on ℝn. We also show that the distribution of equilibrium contracts in this hedonic pricing model is absolutely continuous...

Regularity properties of solutions of elliptic equations in R 2 in limit cases

Angela Alberico, Vincenzo Ferone (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper the Dirichlet problem for a linear elliptic equation in an open, bounded subset of R 2 is studied. Regularity properties of the solutions are proved, when the data are L 1 -functions or Radon measures. In particular sharp assumptions which guarantee the continuity of solutions are given.

Regularity results for a class of obstacle problems in Heisenberg groups

Francesco Bigolin (2013)

Applications of Mathematics

We study regularity results for solutions u H W 1 , p ( Ω ) to the obstacle problem Ω 𝒜 ( x , u ) ( v - u ) d x 0 v 𝒦 ψ , u ( Ω ) such that u ψ a.e. in Ω , where 𝒦 ψ , u ( Ω ) = { v H W 1 , p ( Ω ) : v - u H W 0 1 , p ( Ω ) v ψ a.e. in Ω } , in Heisenberg groups n . In particular, we obtain weak differentiability in the T -direction and horizontal estimates of Calderon-Zygmund type, i.e. d T ψ H W loc 1 , p ( Ω ) T u L loc p ( Ω ) , | ψ | p L loc q ( Ω ) | u | p L loc q ( Ω ) , d where 2 < p < 4 , q > 1 .

Currently displaying 81 – 100 of 207