Displaying 81 – 100 of 551

Showing per page

Semiregular finite elements in solving some nonlinear problems

Jana Zlámalová (2001)

Applications of Mathematics

In this paper, under the maximum angle condition, the finite element method is analyzed for nonlinear elliptic variational problem formulated in [4]. In [4] the analysis was done under the minimum angle condition.

Semiregular hermite tetrahedral finite elements

Alexander Ženíšek, Jana Hoderová-Zlámalová (2001)

Applications of Mathematics

Tetrahedral finite C 0 -elements of the Hermite type satisfying the maximum angle condition are presented and the corresponding finite element interpolation theorems in the maximum norm are proved.

Separable solutions of quasilinear Lane–Emden equations

Alessio Porretta, Laurent Véron (2013)

Journal of the European Mathematical Society

For 0 < p - 1 < q and either ϵ = 1 or ϵ = - 1 , we prove the existence of solutions of - Δ p u = ϵ u q in a cone C S , with vertex 0 and opening S , vanishing on C S , of the form u ( x ) = x - β ω ( x / x ) . The problem reduces to a quasilinear elliptic equation on S and the existence proof is based upon degree theory and homotopy methods. We also obtain a nonexistence result in some critical case by making use of an integral type identity.

Sets of determination for solutions of the Helmholtz equation

Jarmila Ranošová (1997)

Commentationes Mathematicae Universitatis Carolinae

Let α > 0 , λ = ( 2 α ) - 1 / 2 , S n - 1 be the ( n - 1 ) -dimensional unit sphere, σ be the surface measure on S n - 1 and h ( x ) = S n - 1 e λ x , y d σ ( y ) . We characterize all subsets M of n such that inf x n u ( x ) h ( x ) = inf x M u ( x ) h ( x ) for every positive solution u of the Helmholtz equation on n . A closely related problem of representing functions of L 1 ( S n - 1 ) as sums of blocks of the form e λ x k , . / h ( x k ) corresponding to points of M is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References.

Shape and topological sensitivity analysis in domains with cracks

Alexander Khludnev, Jan Sokołowski, Katarzyna Szulc (2010)

Applications of Mathematics

The framework for shape and topology sensitivity analysis in geometrical domains with cracks is established for elastic bodies in two spatial dimensions. The equilibrium problem for the elastic body with cracks is considered. Inequality type boundary conditions are prescribed at the crack faces providing a non-penetration between the crack faces. Modelling of such problems in two spatial dimensions is presented with all necessary details for further applications in shape optimization in structural...

Shape Sensitivity Analysis of the Dirichlet Laplacian in a Half-Space

Cherif Amrouche, Šárka Nečasová, Jan Sokołowski (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Material and shape derivatives for solutions to the Dirichlet Laplacian in a half-space are derived by an application of the speed method. The proposed method is general and can be used for shape sensitivity analysis in unbounded domains for the Neumann Laplacian as well as for the elasticity boundary value problems.

Sharp bounds for the intersection of nodal lines with certain curves

Junehyuk Jung (2014)

Journal of the European Mathematical Society

Let Y be a hyperbolic surface and let φ be a Laplacian eigenfunction having eigenvalue - 1 / 4 - τ 2 with τ > 0 . Let N ( φ ) be the set of nodal lines of φ . For a fixed analytic curve γ of finite length, we study the number of intersections between N ( φ ) and γ in terms of τ . When Y is compact and γ a geodesic circle, or when Y has finite volume and γ is a closed horocycle, we prove that γ is “good” in the sense of [TZ]. As a result, we obtain that the number of intersections between N ( φ ) and γ is O ( τ ) . This bound is sharp.

Sharp estimates for bubbling solutions of a fourth order mean field equation

Chang-Shou Lin, Juncheng Wei (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We consider a sequence of multi-bubble solutions u k of the following fourth order equation Δ 2 u k = ρ k h ( x ) e u k Ω h e u k in Ω , u k = Δ u k = 0 on Ω , ( * ) where h is a C 2 , β positive function, Ω is a bounded and smooth domain in 4 , and ρ k is a constant such that ρ k C . We show that (after extracting a subsequence), lim k + ρ k = 32 σ 3 m for some positive integer m 1 , where σ 3 is the area of the unit sphere in 4 . Furthermore, we obtain the following sharp estimates for  ρ k : ρ k - 32 σ 3 m = c 0 j = 1 m ϵ k , j 2 l j Δ G 4 ( p j , p l ) + Δ R 4 ( p j , p j ) + 1 32 σ 3 Δ log h ( p j ) + o j = 1 m ϵ k , j 2 where c 0 &gt; 0 , log 64 ϵ k , j 4 = max x B δ ( p j ) u k ( x ) - log ( Ω h e u k ) and u k 32 σ 3 j = 1 m G 4 ( · , p j ) in C loc 4 ( Ω { p 1 , ... , p m } ) . This yields a bound of solutions as ρ k converges to 32 σ 3 m from below provided that j = 1 m l j Δ G 4 ( p j , p l ) + Δ R 4 ( p j , p j ) + 1 32 σ 3 Δ log h ( p j ) &gt; 0 . The analytic work of...

Sharp L 1 estimates for singular transport equations

Sergiu Klainerman, Igor Rodnianski (2008)

Journal of the European Mathematical Society

We provide L 1 estimates for a transport equation which contains singular integral operators. The form of the equation was motivated by the study of Kirchhoff–Sobolev parametrices in a Lorentzian space-time satisfying the Einstein equations. While our main application is for a specific problem in General Relativity we believe that the phenomenon which our result illustrates is of a more general interest.

Currently displaying 81 – 100 of 551