Displaying 121 – 140 of 207

Showing per page

Remarks on positive solutions to a semilinear Neumann problem

Anna Maria Candela, Monica Lazzo (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.

Remarks on the powers of elliptic operators.

Jan W. Cholewa, Tomasz Dlotko (2000)

Revista Matemática Complutense

Under natural regularity assumptions on the data the powers of regular elliptic boundary value problems (e.b.v.p.) are shown to be higher order regular e.b.v.p.. This result is used in description of the domains of fractional powers of elliptic operators which information is in order important in regularity considerations for solutions of semilinear parabolic equations. Presented approach allows to avoid C∞-smoothness assumption on the data that is typical in many references.

Remarques sur les équations linéaires elliptiques du second ordre sous forme divergence dans les domaines non bornés

Pierre Louis Lions (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra resistenza e l'unicità della soluzione del problema A u = f , u H 0 1 ( Ω ) nel caso in cui Ω è un aperto di n non limitato, A è un operatore variazionale ellittico del secondo ordine a coefficienti misurabili e limitati e f appartiene a H - 1 ( Ω ) .

Currently displaying 121 – 140 of 207