Displaying 121 – 140 of 551

Showing per page

Singular non polynomial perturbations of - Δ + | x | 2

Franco Nardini (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studia la perturbazione dello spettro deiroperatore - Δ + | x | 2 dovuta all'introduzione di un potenziale singolare non polinomiale e si prova che la serie perturbativa del primo autovalore di tale operatore è sommabile secondo Borel.

Singular perturbation for the Dirichlet boundary control of elliptic problems

Faker Ben Belgacem, Henda El Fekih, Hejer Metoui (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small...

Singular perturbation for the Dirichlet boundary control of elliptic problems

Faker Ben Belgacem, Henda El Fekih, Hejer Metoui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small...

Singularités éliminables pour des équations semi-linéaires

Pierre Baras, Michel Pierre (1984)

Annales de l'institut Fourier

Étant donné L un opérateur différentiel d’ordre m sur un ouvert Ω de R N , K un compact de Ω , γ > 1 et γ ' = γ / ( γ - 1 ) , nous montrons que toute solution de “ L u + u γ = 0 sur Ω K , u 0 ” est solution de “ L u + u γ = 0 sur Ω ” dès que la W m , γ ' -capacité de K est nulle. Cette condition s’avère nécessaire quand L est un opérateur elliptique d’ordre 2. Dans ce cas, nous montrons aussi que ` ` L u + u | u | γ - 1 = μ , u | Ω = 0 ' ' μ est une mesure de Radon bornée sur Ω , a une solution si et seulement si μ ne charge pas les ensembles de W 2 , γ ' -capacité nulle.

Singularly perturbed elliptic equations with solutions concentrating on a 1-dimensional orbit

Bernhard Ruf, P.N. Srikanth (2010)

Journal of the European Mathematical Society

We consider a singularly perturbed elliptic equation with superlinear nonlinearity on an annulus in 4 , and look for solutions which are invariant under a fixed point free 1-parameter group action. We show that this problem can be reduced to a nonhomogeneous equation on a related annulus in dimension 3. The ground state solutions of this equation are single peak solutions which concentrate near the inner boundary. Transforming back, these solutions produce a family of solutions which concentrate...

Currently displaying 121 – 140 of 551