The search session has expired. Please query the service again.
Displaying 141 –
160 of
693
Let be an elliptic differential operator of second order with variable coefficients. In this paper it is proved that any -superharmonic function in the Riesz-Brelot sense is locally summable and satisfies the -superharmonicity in the sense of Schwartz distribution.
We consider Schrödinger operators H = -Δ/2 + V (V≥0 and locally bounded) with Dirichlet boundary conditions, on any open and connected subdomain which either is bounded or satisfies the condition as |x| → ∞. We prove exponential decay at the boundary of all the eigenfunctions of H whenever V diverges sufficiently fast at the boundary ∂D, in the sense that as . We also prove bounds from above and below for Tr(exp[-tH]), and in particular we give criterions for the finiteness of such trace....
Discretization of second order elliptic partial differential equations by discontinuous Galerkin method often results in numerical schemes with penalties. In this paper we analyze these penalized schemes in the context of quite general triangular meshes satisfying only a semiregularity assumption. A new (modified) penalty term is presented and theoretical properties are proven together with illustrative numerical results.
We recall an old result of B. Dittmar. This result permits us to obtain an existence theorem for the Beltrami equation and some other results as a direct consequence of Moser's classical estimates for elliptic operators.
We discuss the existence of solutions for a system of elliptic equations involving a coupling nonlinearity containing a critical and subcritical Sobolev exponent. We establish the existence of ground state solutions. The concentration of solutions is also established as a parameter λ becomes large.
We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution . We show that the Galerkin approximation of based on the so-called biharmonic finite elements is independent of the values of in the interior of any subelement.
The Dirichlet boundary value problem for systems of elliptic partial differential equations at resonance is studied. The existence of a unique generalized solution is proved using a new min-max principle and a global inversion theorem.
We investigate the solvability of a singular equation of Caffarelli-Kohn-Nirenberg type having a critical-like nonlinearity with a sign-changing weight function. We shall examine how the properties of the Nehari manifold and the fibering maps affect the question of existence of positive solutions.
Currently displaying 141 –
160 of
693