Asymptotic theory for weakly nonlinear wave equations in semi-infinite domains.
We focus on the blow-up in finite time of weak solutions to the wave equation with interior and boundary nonlinear sources and dissipations. Our central interest is the relationship of the sources and damping terms to the behavior of solutions. We prove that under specific conditions relating the sources and the dissipations (namely p > m and k > m), weak solutions blow up in finite time.
We study a model describing vibrations of a cylindrical domain with thickness e > 0. A characteristic of this model is that it contains pollution terms in the boundary data and missing terms in the initial data. The method of sentinels'' of J. L. Lions [7] is followed to construct a sentinel using the observed vibrations on the boundary. Such a sentinel, by construction, provides information on pollution terms independent of missing terms. This requires resolution of initial-boundary value...
We consider a special type of a one-dimensional quasilinear wave equation wtt - phi (wt / wx) wxx = 0 in a bounded domain with Dirichlet boundary conditions and show that classical solutions blow up in finite time even for small initial data in some norm.
We study a class of third order hyperbolic operators in with triple characteristics on . We consider the case when the fundamental matrix of the principal symbol for has a couple of non vanishing real eigenvalues and is strictly hyperbolic for We prove that is strongly hyperbolic, that is the Cauchy problem for is well posed in for any lower order terms .
We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions...
We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate the rich behavior...
We study an initial boundary-value problem for a wave equation with time-dependent sound speed. In the control problem, we wish to determine a sound-speed function which damps the vibration of the system. We consider the case where the sound speed can take on only two values, and propose a simple control law. We show that if the number of modes in the vibration is finite, and none of the eigenfrequencies are repeated, the proposed control law does lead to energy decay. We illustrate the rich behavior of...