Displaying 21 – 40 of 70

Showing per page

Indirect stabilization of locally coupled wave-type systems

Fatiha Alabau-Boussouira, Matthieu Léautaud (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study in an abstract setting the indirect stabilization of systems of two wave-like equations coupled by a localized zero order term. Only one of the two equations is directly damped. The main novelty in this paper is that the coupling operator is not assumed to be coercive in the underlying space. We show that the energy of smooth solutions of these systems decays polynomially at infinity, whereas it is known that exponential stability does not...

Indirect stabilization of locally coupled wave-type systems

Fatiha Alabau-Boussouira, Matthieu Léautaud (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study in an abstract setting the indirect stabilization of systems of two wave-like equations coupled by a localized zero order term. Only one of the two equations is directly damped. The main novelty in this paper is that the coupling operator is not assumed to be coercive in the underlying space. We show that the energy of smooth solutions of these systems decays polynomially at infinity, whereas it is known that exponential stability does not...

Influence of bottom topography on long water waves

Florent Chazel (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We focus here on the water waves problem for uneven bottoms in the long-wave regime, on an unbounded two or three-dimensional domain. In order to derive asymptotic models for this problem, we consider two different regimes of bottom topography, one for small variations in amplitude, and one for strong variations. Starting from the Zakharov formulation of this problem, we rigorously compute the asymptotic expansion of the involved Dirichlet-Neumann operator. Then, following the global strategy...

Invariants, conservation laws and time decay for a nonlinear system of Klein-Gordon equations with Hamiltonian structure

Changxing Miao, Youbin Zhu (2006)

Applicationes Mathematicae

We discuss invariants and conservation laws for a nonlinear system of Klein-Gordon equations with Hamiltonian structure ⎧ u t t - Δ u + m ² u = - F ( | u | ² , | v | ² ) u , ⎨ ⎩ v t t - Δ v + m ² v = - F ( | u | ² , | v | ² ) v for which there exists a function F(λ,μ) such that ∂F(λ,μ)/∂λ = F₁(λ,μ), ∂F(λ,μ)/∂μ = F₂(λ,μ). Based on Morawetz-type identity, we prove that solutions to the above system decay to zero in local L²-norm, and local energy also decays to zero if the initial energy satisfies E ( u , v , , 0 ) = 1 / 2 ( | u ( 0 ) | ² + | u t ( 0 ) | ² + m ² | u ( 0 ) | ² + | v ( 0 ) | ² + | v t ( 0 ) | ² + m ² | v ( 0 ) | ² + F ( | u ( 0 ) | ² , | v ( 0 ) | ² ) ) d x < , and F₁(|u|²,|v|²)|u|² + F₂(|u|²,|v|²)|v|² - F(|u|²,|v|²) ≥ aF(|u|²,|v|²) ≥ 0, a > 0.

Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays

Frank Woittennek, Joachim Rudolph (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński’s...

Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays

Frank Woittennek, Joachim Rudolph (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing ...

Nonexistence results for the Cauchy problem of some systems of hyperbolic equations

Mokhtar Kirane, Salim Messaoudi (2002)

Annales Polonici Mathematici

We consider the systems of hyperbolic equations ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | v | p , t > 0, x N , (S1) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | u | q , t > 0, x N u = Δ ( a ( t , x ) u ) + h ( t , x ) | v | p , t > 0, x N , (S2) ⎨ ⎩ v = Δ ( c ( t , x ) v ) + l ( t , x ) | v | m + k ( t , x ) | u | q , t > 0, x N , (S3) ⎧ u = Δ ( a ( t , x ) u ) + Δ ( b ( t , x ) v ) + h ( t , x ) | u | p , t > 0, x N , ⎨ ⎩ v = Δ ( c ( t , x ) v ) + k ( t , x ) | v | q , t > 0, x N , in ( 0 , ) × N with u(0,x) = u₀(x), v(0,x) = v₀(x), uₜ(0,x) = u₁(x), vₜ(0,x) = v₁(x). We show that, in each case, there exists a bound B on N such that for 1 ≤ N ≤ B solutions to the systems blow up in finite time.

On periodic in the plane solutions of second order linear hyperbolic systems

Tariel Kiguradze (1997)

Archivum Mathematicum

Sufficient conditions for the problem 2 u x y = P 0 ( x , y ) u + P 1 ( x , y ) u x + P 2 ( x , y ) u y + q ( x , y ) , u ( x + ω 1 , y ) = u ( x , y ) , u ( x , y + ω 2 ) = u ( x , y ) to have the Fredholm property and to be uniquely solvable are established, where ω 1 and ω 2 are positive constants and P j : R 2 R n × n ( j = 0 , 1 ...

Currently displaying 21 – 40 of 70