Displaying 21 – 40 of 310

Showing per page

A positivity preserving central scheme for shallow water flows in channels with wet-dry states

Jorge Balbás, Gerardo Hernandez-Duenas (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a high-resolution, non-oscillatory semi-discrete central scheme for one-dimensional shallow-water flows along channels with non uniform cross sections of arbitrary shape and bottom topography. The proposed scheme extends existing central semi-discrete schemes for hyperbolic conservation laws and enjoys two properties crucial for the accurate simulation of shallow-water flows: it preserves the positivity of the water height, and it is well balanced, i.e., the source terms arising from...

A result of existence for an original convection-diffusion equation.

Gérard Gagneux, Guy Vallet (2005)

RACSAM

En este artículo se estudia el análisis matemático de una ley de conservación que no es clásica. El modelo describe procesos estatigráficos en Geología y tiene en cuenta una condición de tasa de erosión limitada. En primer lugar se presentan el modelo físico y la formulación matemática (posiblemente nueva). Tras enunciar la definición solución se presentan las herramientas que permiten probar la existencia de soluciones.

A steady-state capturing method for hyperbolic systems with geometrical source terms

Shi Jin (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a simple numerical method for capturing the steady state solution of hyperbolic systems with geometrical source terms. We use the interface value, rather than the cell-averages, for the source terms that balance the nonlinear convection at the cell interface, allowing the numerical capturing of the steady state with a formal high order accuracy. This method applies to Godunov or Roe type upwind methods but requires no modification of the Riemann solver. Numerical experiments on scalar...

A steady-state capturing method for hyperbolic systems with geometrical source terms

Shi Jin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a simple numerical method for capturing the steady state solution of hyperbolic systems with geometrical source terms. We use the interface value, rather than the cell-averages, for the source terms that balance the nonlinear convection at the cell interface, allowing the numerical capturing of the steady state with a formal high order accuracy. This method applies to Godunov or Roe type upwind methods but requires no modification of the Riemann solver. Numerical experiments on scalar...

A uniqueness result for the continuity equation in two dimensions

Giovanni Alberti, Stefano Bianchini, Gianluca Crippa (2014)

Journal of the European Mathematical Society

We characterize the autonomous, divergence-free vector fields b on the plane such that the Cauchy problem for the continuity equation t u + . ˙ ( b u ) = 0 admits a unique bounded solution (in the weak sense) for every bounded initial datum; the characterization is given in terms of a property of Sard type for the potential f associated to b . As a corollary we obtain uniqueness under the assumption that the curl of b is a measure. This result can be extended to certain non-autonomous vector fields b with bounded divergence....

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Accurate numerical discretizations of non-conservative hyperbolic systems

Ulrik Skre Fjordholm, Siddhartha Mishra (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an alternative framework for designing efficient numerical schemes for non-conservative hyperbolic systems. This approach is based on the design of entropy conservative discretizations and suitable numerical diffusion operators that mimic the effect of underlying viscous mechanisms. This approach is illustrated by considering two model non-conservative systems: Lagrangian gas dynamics in non-conservative form and a form of isothermal Euler equations. Numerical experiments demonstrating...

Adaptive finite element relaxation schemes for hyperbolic conservation laws

Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock regions and coarser mesh in the smooth parts of the solution. The computational performance of these methods is demonstrated by considering scalar...

Adaptive Finite Element Relaxation Schemes for Hyperbolic Conservation Laws

Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and study semidiscrete and fully discrete finite element schemes based on appropriate relaxation models for systems of Hyperbolic Conservation Laws. These schemes are using piecewise polynomials of arbitrary degree and their consistency error is of high order. The methods are combined with an adaptive strategy that yields fine mesh in shock regions and coarser mesh in the smooth parts of the solution. The computational performance of these methods is demonstrated by considering scalar...

An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws

Michael Breuss (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We discuss the occurrence of oscillations when using central schemes of the Lax-Friedrichs type (LFt), Rusanov’s method and the staggered and non-staggered second order Nessyahu-Tadmor (NT) schemes. Although these schemes are monotone or TVD, respectively, oscillations may be introduced at local data extrema. The dependence of oscillatory properties on the numerical viscosity coefficient is investigated rigorously for the LFt schemes, illuminating also the properties of Rusanov’s method. It turns...

An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws

Michael Breuss (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We discuss the occurrence of oscillations when using central schemes of the Lax-Friedrichs type (LFt), Rusanov's method and the staggered and non-staggered second order Nessyahu-Tadmor (NT) schemes. Although these schemes are monotone or TVD, respectively, oscillations may be introduced at local data extrema. The dependence of oscillatory properties on the numerical viscosity coefficient is investigated rigorously for the LFt schemes, illuminating also the properties of Rusanov's method. It turns...

Currently displaying 21 – 40 of 310