Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Obstacle problems for scalar conservation laws

Laurent Levi (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we are interested in bilateral obstacle problems for quasilinear scalar conservation laws associated with Dirichlet boundary conditions. Firstly, we provide a suitable entropy formulation which ensures uniqueness. Then, we justify the existence of a solution through the method of penalization and by referring to the notion of entropy process solution due to specific properties of bounded sequences in L . Lastly, we study the behaviour of this solution and its stability properties with...

Obstacle problems for scalar conservation laws

Laurent Levi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we are interested in bilateral obstacle problems for quasilinear scalar conservation laws associated with Dirichlet boundary conditions. Firstly, we provide a suitable entropy formulation which ensures uniqueness. Then, we justify the existence of a solution through the method of penalization and by referring to the notion of entropy process solution due to specific properties of bounded sequences in L∞. Lastly, we study the behaviour of this solution and its stability properties...

On a hybrid finite-volume-particle method

Alina Chertock, Alexander Kurganov (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...

On a hybrid finite-volume-particle method

Alina Chertock, Alexander Kurganov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a hybrid finite-volume-particle numerical method for computing the transport of a passive pollutant by a flow. The flow is modeled by the one- and two-dimensional Saint-Venant system of shallow water equations and the pollutant propagation is described by a transport equation. This paper is an extension of our previous work [Chertock, Kurganov and Petrova, J. Sci. Comput. (to appear)], where the one-dimensional finite-volume-particle method has been proposed. The core idea behind the...

On a supplementary conservation law for a hyperbolic model of heat conductor

Mariano Torrisi, Antonino Valenti (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the context of the wave propagation theory in nonlinear hyperbolic systems, we analyse, in the case of a rigid heat conductor, the model proposed by G. Grioli. After introducing the constitutive relations according to the point of view of the extended thermodynamics, we look for the compatibility of the governing equations with a supplementary conservation law. We obtain the functional form of the constitutive quantities and we are able to show that the governing equations may be written in symmetric...

On measure solutions to the Zero-pressure gas model and their uniqueness

Jiequan Li, Gerald G. Warnecke (2002)

Mathematica Bohemica

The system of zero-pressure gas dynamics conservation laws describes the dynamics of free particles sticking under collision while mass and momentum are conserved. The existence of such solutions was established some time ago. Here we report a uniqueness result that uses the Oleinik entropy condition and a cohesion condition. Both of these conditions are automatically satisfied by solutions obtained in previous existence results. Important tools in the proof of uniqueness are regularizations, generalized...

On the computation of roll waves

Shi Jin, Yong Jung Kim (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The phenomenon of roll waves occurs in a uniform open-channel flow down an incline, when the Froude number is above two. The goal of this paper is to analyze the behavior of numerical approximations to a model roll wave equation u t + u u x = u , u ( x , 0 ) = u 0 ( x ) , which arises as a weakly nonlinear approximation of the shallow water equations. The main difficulty associated with the numerical approximation of this problem is its linear instability. Numerical round-off error can easily overtake the numerical solution and yields false...

On the Computation of Roll Waves

Shi Jin, Yong Jung Kim (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The phenomenon of roll waves occurs in a uniform open-channel flow down an incline, when the Froude number is above two. The goal of this paper is to analyze the behavior of numerical approximations to a model roll wave equation ut + uux = u,u(x,0) = u0(x), which arises as a weakly nonlinear approximation of the shallow water equations. The main difficulty associated with the numerical approximation of this problem is its linear instability. Numerical round-off error can easily overtake the...

On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws

Tim Kröger, Sebastian Noelle, Susanne Zimmermann (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey’s Method of Transport (MoT) (respectively the second author’s ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the gas kinetic derivation...

On the connection between some Riemann-solver free approaches to the approximation of multi-dimensional systems of hyperbolic conservation laws

Tim Kröger, Sebastian Noelle, Susanne Zimmermann (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present some interesting connections between a number of Riemann-solver free approaches to the numerical solution of multi-dimensional systems of conservation laws. As a main part, we present a new and elementary derivation of Fey's Method of Transport (MoT) (respectively the second author's ICE version of the scheme) and the state decompositions which form the basis of it. The only tools that we use are quadrature rules applied to the moment integral used in the...

On the controllability of the 1-D isentropic Euler equation

Olivier Glass (2007)

Journal of the European Mathematical Society

We study the controllability problem for the one-dimensional Euler isentropic system, both in Eulerian and Lagrangian coordinates, by means of boundary controls, in the context of weak entropy solutions. We give a sufficient condition on the initial and final states under which the first one can be steered to the latter.

On the existence of shock propagation in a flow through deformable porous media

E. Comparini, M. Ughi (2002)

Bollettino dell'Unione Matematica Italiana

We consider a one-dimensional incompressible flow through a porous medium undergoing deformations such that the porosity and the hydraulic conductivity can be considered to be functions of the flux intensity. The medium is initially dry and we neglect capillarity, so that a sharp wetting front proceeds into the medium. We consider the open problem of the continuation of the solution in the case of onset of singularities, which can be interpreted as a local collapse of the medium, in the general...

On the modelling and management of traffic

Rinaldo M. Colombo, Paola Goatin, Massimiliano D. Rosini (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Several realistic situations in vehicular traffic that give rise to queues can be modeled through conservation laws with boundary and unilateral constraints on the flux. This paper provides a rigorous analytical framework for these descriptions, comprising stability with respect to the initial data, to the boundary inflow and to the constraint. We present a framework to rigorously state optimal management problems and prove the existence of the corresponding optimal controls. Specific cases are...

On the modelling and management of traffic

Rinaldo M. Colombo, Paola Goatin, Massimiliano D. Rosini (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Several realistic situations in vehicular traffic that give rise to queues can be modeled through conservation laws with boundary and unilateral constraints on the flux. This paper provides a rigorous analytical framework for these descriptions, comprising stability with respect to the initial data, to the boundary inflow and to the constraint. We present a framework to rigorously state optimal management problems and prove the existence of the corresponding optimal controls. Specific cases...

Currently displaying 1 – 20 of 31

Page 1 Next