Previous Page 2

Displaying 21 – 35 of 35

Showing per page

Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗

Siddhartha Mishra, Eitan Tadmor (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....

Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗

Siddhartha Mishra, Eitan Tadmor (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....

Continuity of solutions of a quasilinear hyperbolic equation with hysteresis

Petra Kordulová (2012)

Applications of Mathematics

This paper is devoted to the investigation of quasilinear hyperbolic equations of first order with convex and nonconvex hysteresis operator. It is shown that in the nonconvex case the equation, whose nonlinearity is caused by the hysteresis term, has properties analogous to the quasilinear hyperbolic equation of first order. Hysteresis is represented by a functional describing adsorption and desorption on the particles of the substance. An existence result is achieved by using an approximation of...

Continuous dependence for BV-entropy solutions to strongly degenerate parabolic equations with variable coefficients

Watanabe, Hiroshi (2017)

Proceedings of Equadiff 14

We consider the Cauchy problem for degenerate parabolic equations with variable coefficients. The equation has nonlinear convective term and degenerate diffusion term which depends on the spatial and time variables. In this paper, we prove the continuous dependence for entropy solutions in the space BV to the problem not only initial function but also all coefficients.

Control of the continuity equation with a non local flow

Rinaldo M. Colombo, Michael Herty, Magali Mercier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper focuses on the analytical properties of the solutions to the continuity equation with non local flow. Our driving examples are a supply chain model and an equation for the description of pedestrian flows. To this aim, we prove the well posedness of weak entropy solutions in a class of equations comprising these models. Then, under further regularity conditions, we prove the differentiability of solutions with respect to the initial datum and characterize this derivative. A necessary ...

Control of the continuity equation with a non local flow

Rinaldo M. Colombo, Michael Herty, Magali Mercier (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper focuses on the analytical properties of the solutions to the continuity equation with non local flow. Our driving examples are a supply chain model and an equation for the description of pedestrian flows. To this aim, we prove the well posedness of weak entropy solutions in a class of equations comprising these models. Then, under further regularity conditions, we prove the differentiability of solutions with respect to the initial datum and characterize this derivative. A necessary ...

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a “rough” coefficient function k ( x ) . We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k ' is in B V , thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations...

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a "rough"coefficient function k(x). We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion...

Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function

Sébastien Martin, Julien Vovelle (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet problem for a scalar conservation law with a flux function having finitely many discontinuities. The well-posedness of this problem was proved by Carrillo [J. Evol. Eq. 3 (2003) 687–705]. Classical numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation of the initial...

Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system

Andreas Prohl, Markus Schmuck (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin's projection method to obtain an efficient approximation that converges to strong solutions at optimal rates.

Currently displaying 21 – 35 of 35

Previous Page 2