Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions
We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a “rough” coefficient function . We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, is in , thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations...
We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a "rough"coefficient function k(x). We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion...
This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet problem for a scalar conservation law with a flux function having finitely many discontinuities. The well-posedness of this problem was proved by Carrillo [J. Evol. Eq. 3 (2003) 687–705]. Classical numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation of the initial...
We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin's projection method to obtain an efficient approximation that converges to strong solutions at optimal rates.
This paper is aimed at the description of the multi-dimensional finite volume solver EULER, which has been developed for the numerical solution of the compressible Euler equations during several last years. The present overview of numerical schemes and the explanation of numerical techniques and tricks which have been used for EULER could be of certain interest not only for registered users but also for numerical mathematicians who have decided to implement a finite volume solver themselves. This...
This contribution deals with the numerical simulation of dislocation dynamics. Dislocations are described by means of the evolution of a family of closed or open smooth curves , . The curves are driven by the normal velocity which is the function of curvature and the position. The evolution law reads as: . The motion law is treated using direct approach numerically solved by two schemes, i. e., backward Euler semi-implicit and semi-discrete method of lines. Numerical stability is improved...
In this paper we propose the study of a first-order non-linear hyperbolic equation in a bounded domain. We give a result of existence and uniqueness of the entropic measure-valued solution and of the entropic weak solution; for some general assumptions on the data.