Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Carathéodory solutions of hyperbolic functional differential inequalities with first order derivatives

Adrian Karpowicz (2008)

Annales Polonici Mathematici

We consider the Darboux problem for a functional differential equation: ( ² u ) / ( x y ) ( x , y ) = f ( x , y , u ( x , y ) , u ( x , y ) , u / x ( x , y ) , u / y ( x , y ) ) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]∖(0,a]×(0,b], where the function u ( x , y ) : [ - a , 0 ] × [ - b , 0 ] k is defined by u ( x , y ) ( s , t ) = u ( s + x , t + y ) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We give a few theorems about weak and strong inequalities for this problem. We also discuss the case where the right-hand side of the differential equation is linear.

Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations

Eduard Feireisl (1990)

Aplikace matematiky

In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation U t t + d U t - σ ( x , t , U x ) x + a U = f ( x , t , U x , U t , U ) with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function f . The main idea of the proof relies on the compensated compactness theory.

Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term

Doan Thi Nhu Quynh, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long (2023)

Applications of Mathematics

We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions...

Control for the Sine-Gordon equation

Madalina Petcu, Roger Temam (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this article we apply the optimal and the robust control theory to the sine-Gordon equation. In our case the control is given by the boundary conditions and we work in a finite time horizon. We present at the beginning the optimal control problem and we derive a necessary condition of optimality and we continue by formulating a robust control problem for which existence and uniqueness of solutions are derived.

Control for the sine-gordon equation

Madalina Petcu, Roger Temam (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this article we apply the optimal and the robust control theory to the sine-Gordon equation. In our case the control is given by the boundary conditions and we work in a finite time horizon. We present at the beginning the optimal control problem and we derive a necessary condition of optimality and we continue by formulating a robust control problem for which existence and uniqueness of solutions are derived.

Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria

Felipe Alvarez, Hedy Attouch (2001)

ESAIM: Control, Optimisation and Calculus of Variations

It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically...

Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria

Felipe Alvarez, Hedy Attouch (2010)

ESAIM: Control, Optimisation and Calculus of Variations

It is established convergence to a particular equilibrium for weak solutions of abstract linear equations of the second order in time associated with monotone operators with nontrivial kernel. Concerning nonlinear hyperbolic equations with monotone and conservative potentials, it is proved a general asymptotic convergence result in terms of weak and strong topologies of appropriate Hilbert spaces. It is also considered the stabilization of a particular equilibrium via the introduction of an asymptotically...

Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction

Abdur Rashid, Shakaib Akram (2010)

Applications of Mathematics

In this paper, the evolution equations with nonlinear term describing the resonance interaction between the long wave and the short wave are studied. The semi-discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy estimation method is used to obtain error estimates for the approximate solutions. The numerical results obtained are compared with exact solution and found to be in good agreement.

Currently displaying 1 – 20 of 22

Page 1 Next