On hyperbolic partial differential equations in Banach spaces Bogdan Rzepecki (1986) Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni Viene dimostrata l'esistenza di soluzioni del problema di Darboux per l'equazione iperbolica z x y ′′ = f ( x , y , z , Z x ′ , z y ) sul planiquarto x ≥ 0 , y ≥ 0 . Qui, f è una funzione continua, con valori in uno spazio Banach che soddisfano alcune condizioni di regolarità espresse in termini della misura di non-compattezza α .
On L...-decay and scattering for nonlinear Klein-Gordon equations. Philip Brenner (1982) Mathematica Scandinavica
On Lipschitz continuity of the solution map for two-dimensional wave maps Piero D'Ancona, Vladimir Georgiev (2003) Banach Center Publications
On nontrivial solutions of a semilinear wave equation Paul H. Rabinowitz (1981) Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
On second order nonlinear equations with rectilinear characteristics. Gvazava, J. (2000) Georgian Mathematical Journal
On singular perturbations for quasilinear IBV problems Albert Milani (2000) Annales de la Faculté des sciences de Toulouse : Mathématiques
On solutions of quasilinear wave equations with nonlinear damping terms Jong Yeoul Park, Jeong Ja Bae (2000) Czechoslovak Mathematical Journal In this paper we consider the existence and asymptotic behavior of solutions of the following problem: u t t ( t , x ) - ( α + β ∥ ∇ u ( t , x ) ∥ 2 2 + β ∥ ∇ v ( t , x ) ∥ 2 2 ) Δ u ( t , x ) + δ | u t ( t , x ) | p - 1 u t ( t , x ) = μ | u ( t , x ) | q - 1 u ( t , x ) , x ∈ Ω , t ≥ 0 , v t t ( t , x ) - ( α + β ∥ ∇ u ( t , x ) ∥ 2 2 + β ∥ ∇ v ( t , x ) ∥ 2 2 ) Δ v ( t , x ) + δ | v t ( t , x ) | p - 1 v t ( t , x ) = μ | v ( t , x ) | q - 1 v ( t , x ) , x ∈ Ω , t ≥ 0 , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) , x ∈ Ω , v ( 0 , x ) = v 0 ( x ) , v t ( 0 , x ) = v 1 ( x ) , x ∈ Ω , u | ∂ Ω = v | ∂ Ω = 0 where q > 1 , p ≥ 1 , δ > 0 , α > 0 , β ≥ 0 , μ ∈ ℝ and Δ is the Laplacian in ℝ N .
On solvability of boundary value problems for the wave equation with a nonlinear dissipation in noncylindrical domains. Kozhanov, A.I., Lar'kin, N.A. (2001) Sibirskij Matematicheskij Zhurnal
On Space-Time Means and Strong Global Solutions of Nonlinear Hyperbolic Equations. Philip Brenner (1989) Mathematische Zeitschrift
On Squeezing and Flow of Energy for Nonlinear Wave Equations. S.B. Kuksin (1995) Geometric and functional analysis
On strong globbal solutions of nonlinear hyperbolic equations P. Brenner (1988/1989) Séminaire Équations aux dérivées partielles (Polytechnique)
On sufficient conditions of existence and uniqueness of periodic in a strip solutions of nonlinear hyperbolic equations. Kiguradze, T. (1997) Memoirs on Differential Equations and Mathematical Physics
On the barotropic motion of compressible perfect fluids H. Beirão Da Veiga (1981) Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
On the blowing up of solutions to nonlinear wave equations in two space dimensions. M.A. Rammaha (1988) Journal für die reine und angewandte Mathematik
On the coupled system of nonlinear wave equations with different propagation speeds Tohru Ozawa, Kimitoshi Tsutaya, Yoshio Tsutsumi (2000) Banach Center Publications
On the Decay of Solutions of Some Nonlinear Dissipative Wave Equations in Higher Dimensions. Mitsuhiro Nakao (1986) Mathematische Zeitschrift
On the Dirichlet problem for the nonlinear wave equation in bounded domains with corner points. Ben-Naoum, Abdou Kouider (1996) Bulletin of the Belgian Mathematical Society - Simon Stevin
On the existence and uniqueness of solutions of the Goursat problem for systems of functional partial differential equations of hyperbolic type. Grigolia, M. (1999) Memoirs on Differential Equations and Mathematical Physics
On the existence of free vibrations for a beam equation when the period is an irrational multiple of the length Eduard Feireisl (1988) Aplikace matematiky The author examined non-zero T -periodic (in time) solutions for a semilinear beam equation under the condition that the period T is an irrational multiple of the length. It is shown that for a.e. T ∈ R 1 (in the sense of the Lebesgue measure on R 1 ) the solutions do exist provided the right-hand side of the equation is sublinear.
On the Existence of Global Smooth Solutions of Certain Semi-Linear Hyperbolic Equations. Philip Brenner (1979) Mathematische Zeitschrift