Displaying 61 – 80 of 475

Showing per page

Blow-up of the solution to the initial-value problem in nonlinear three-dimensional hyperelasticity

J. A. Gawinecki, P. Kacprzyk (2008)

Applicationes Mathematicae

We consider the initial value problem for the nonlinear partial differential equations describing the motion of an inhomogeneous and anisotropic hyperelastic medium. We assume that the stored energy function of the hyperelastic material is a function of the point x and the nonlinear Green-St. Venant strain tensor e j k . Moreover, we assume that the stored energy function is C with respect to x and e j k . In our description we assume that Piola-Kirchhoff’s stress tensor p j k depends on the tensor e j k . This means...

Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces

Jean-Marc Delort, Jérémie Szeftel (2006)

Annales de l’institut Fourier

This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.

Breakdown in finite time of solutions to a one-dimensional wave equation.

Mokhtar Kirane, Salim A. Messaoudi (2000)

Revista Matemática Complutense

We consider a special type of a one-dimensional quasilinear wave equation wtt - phi (wt / wx) wxx = 0 in a bounded domain with Dirichlet boundary conditions and show that classical solutions blow up in finite time even for small initial data in some norm.

Breathers for nonlinear wave equations

Michael W. Smiley (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The semilinear differential equation (1), (2), (3), in × Ω with Ω N , (a nonlinear wave equation) is studied. In particular for Ω = 3 , the existence is shown of a weak solution u ( t , x ) , periodic with period T , non-constant with respect to t , and radially symmetric in the spatial variables, that is of the form u ( t , x ) = ν ( t , | x | ) . The proof is based on a distributional interpretation for a linear equation corresponding to the given problem, on the Paley-Wiener criterion for the Laplace Transform, and on the alternative method of...

Carathéodory solutions of hyperbolic functional differential inequalities with first order derivatives

Adrian Karpowicz (2008)

Annales Polonici Mathematici

We consider the Darboux problem for a functional differential equation: ( ² u ) / ( x y ) ( x , y ) = f ( x , y , u ( x , y ) , u ( x , y ) , u / x ( x , y ) , u / y ( x , y ) ) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]∖(0,a]×(0,b], where the function u ( x , y ) : [ - a , 0 ] × [ - b , 0 ] k is defined by u ( x , y ) ( s , t ) = u ( s + x , t + y ) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We give a few theorems about weak and strong inequalities for this problem. We also discuss the case where the right-hand side of the differential equation is linear.

Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations

Eduard Feireisl (1990)

Aplikace matematiky

In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation U t t + d U t - σ ( x , t , U x ) x + a U = f ( x , t , U x , U t , U ) with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function f . The main idea of the proof relies on the compensated compactness theory.

Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term

Doan Thi Nhu Quynh, Nguyen Huu Nhan, Le Thi Phuong Ngoc, Nguyen Thanh Long (2023)

Applications of Mathematics

We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions...

Currently displaying 61 – 80 of 475