Previous Page 5

Displaying 81 – 83 of 83

Showing per page

Numerical solution of an inverse initial boundary value problem for the wave equation in the presence of conductivity imperfections of small volume

Mark Asch, Marion Darbas, Jean-Baptiste Duval (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the numerical solution, in two- and three-dimensional bounded domains, of the inverse problem for identifying the location of small-volume, conductivity imperfections in a medium with homogeneous background. A dynamic approach, based on the wave equation, permits us to treat the important case of “limited-view” data. Our numerical algorithm is based on the coupling of a finite element solution of the wave equation, an exact controllability method and finally a Fourier inversion for...

Numerical solution of second order one-dimensional linear hyperbolic equation using trigonometric wavelets

Mahmood Jokar, Mehrdad Lakestani (2012)

Kybernetika

A numerical technique is presented for the solution of second order one dimensional linear hyperbolic equation. This method uses the trigonometric wavelets. The method consists of expanding the required approximate solution as the elements of trigonometric wavelets. Using the operational matrix of derivative, we reduce the problem to a set of algebraic linear equations. Some numerical example is included to demonstrate the validity and applicability of the technique. The method produces very accurate...

Numerical study of acoustic multiperforated plates

Abderrahmane Bendali, M’Barek Fares, Sophie Laurens, Sébastien Tordeux (2012)

ESAIM: Proceedings

It is rather classical to model multiperforated plates by approximate impedance boundary conditions. In this article we would like to compare an instance of such boundary conditions obtained through a matched asymptotic expansions technique to direct numerical computations based on a boundary element formulation in the case of linear acoustic.

Currently displaying 81 – 83 of 83

Previous Page 5