singular limit for relaxation and viscosity approximations of extended traffic flow models.
The semi-group associated with the Cauchy problem for a scalar conservation law is known to be a contraction in . However it is not a contraction in for any . Leger showed in [20] that for a convex flux, it is however a contraction in up to a suitable shift. We investigate in this paper whether such a contraction may happen for systems. The method is based on the relative entropy method. Our general analysis leads us to the new geometrical notion of Genuinely non-Temple systems. We treat in...
The Cauchy problem for first order system is known to be well-posed in when it admits a microlocal symmetrizer which is smooth in and Lipschitz continuous in . This paper contains three main results. First we show that a Lipschitz smoothness globally in is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of full symmetrizers having the same smoothness. This notion was first introduced in [FL67]. This is the key point...
We consider a potential type perturbation of the three dimensional wave equation and we establish a dispersive estimate for the associated propagator. The main estimate is proved under the assumption that the potential satisfies where .
We study the decay in time of the spatial -norm (1 ≤ p ≤ ∞) of solutions to parabolic conservation laws with dispersive and dissipative terms added uₜ - uₓₓₜ - νuₓₓ + buₓ = f(u)ₓ or uₜ + uₓₓₓ - νuₓₓ + buₓ = f(u)ₓ, and we show that under general assumptions about the nonlinearity, solutions of the nonlinear equations have the same long time behavior as their linearizations at the zero solution.
We prove the --time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the --time decay estimates.
We prove stability and derive error estimates for the recently introduced central discontinuous Galerkin method, in the context of linear hyperbolic equations with possibly discontinuous solutions. A comparison between the central discontinuous Galerkin method and the regular discontinuous Galerkin method in this context is also made. Numerical experiments are provided to validate the quantitative conclusions from the analysis.